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Abstract

In Open-Set Domain Generalization (OSDG), the model is exposed to both new
variations of data appearance (domains) and open-set conditions, where both
known and novel categories are present at test time. The challenges of this task
arise from the dual need to generalize across diverse domains and accurately quan-
tify category novelty, which is critical for applications in dynamic environments.
Recently, meta-learning techniques have demonstrated superior results in OSDG,
effectively orchestrating the meta-train and -test tasks by employing varied ran-
dom categories and predefined domain partition strategies. These approaches
prioritize a well-designed training schedule over traditional methods that focus
primarily on data augmentation and the enhancement of discriminative feature
learning. The prevailing meta-learning models in OSDG typically utilize a prede-
fined sequential domain scheduler to structure data partitions. However, a crucial
aspect that remains inadequately explored is the influence brought by strategies
of domain schedulers during training. In this paper, we observe that an adaptive
domain scheduler benefits more in OSDG compared with prefixed sequential and
random domain schedulers. We propose the Evidential Bi-Level Hardest Domain
Scheduler (EBiL-HaDS) to achieve an adaptive domain scheduler. This method
strategically sequences domains by assessing their reliabilities in utilizing a fol-
lower network, trained with confidence scores learned in an evidential manner,
regularized by max rebiasing discrepancy, and optimized in a bi-level manner.
We verify our approach on three OSDG benchmarks, i.e., PACS, DigitsDG, and
OfficeHome. The results show that our method substantially improves OSDG per-
formance and achieves more discriminative embeddings for both the seen and un-
seen categories, underscoring the advantage of a judicious domain scheduler for
the generalizability to unseen domains and unseen categories. The source code
will be available at https://github.com/KPeng9510/EBiL-HaDS.

1 Introduction

Open-Set Domain Generalization (OSDG) is a challenging task where the model is exposed to both:
domain shift and category shift. Recent OSDG works often take a meta-learning approach [53, 45]
which simulates different cross-domain learning tasks during training. These methods convention-
ally use a predefined sequential domain scheduler to create meta-train and meta-test domains within
each minibatch. But is fixing the meta-learning domain schedule a priori the best way to go? As
a step to explore this, our work investigates the new idea of adaptive domain scheduler, which
dynamically adjusts the training order based on ongoing model performance and domain difficulty.
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OSDG is critical for many real-world applications with changing conditions, ranging from health-
care [32] and security [5] to autonomous driving [18]. Despite the remarkable success of deep learn-
ing, the recognition quality often deteriorates when facing out-of-distribution samples. This problem
is amplified in OSDG settings, where the model faces a dual challenge of identifying and rejecting
unseen categories, e.g., by delivering low confidence score in such cases [26, 45] while simultane-
ously generalizing well to unseen data appearances (domain shift). Historically, research efforts in
OSDG have predominantly focused on the latter, developing methods to adapt models to varying
domain conditions. Strategies to improve domain generalization include the use of Generative Ad-
versarial Networks (GANs) [4], contrastive learning [64], and metric learning [26]. MLDG [45] for
the first time proposed to use meta-learning to handle OSDG tasks. However, all these works fol-
low the OSDG protocols where different source domains preserve different distributions of known
categories, which diverges the domain gaps for different categories. This divergence makes the
challenge more inclined towards the domain generalization aspect. Wang et al. [53] revised these
benchmarks for OSDG, standardizing the category distribution across source domains to achieve a
more balanced evaluation of both domain generalization and open set recognition challenges. This
revision includes established open-set recognition methods such as Adversarial Reciprocal Points
Learning (ARPL) [8]. Recently, Wang et al. [53] introduced an effective meta-learning approach
named MEDIC, featuring a binary classification and a predefined sequential domain scheduler for
the data partition during meta-train and -test stages.

However, these existing meta-learning-based OSDG approaches, i.e., MEIDC [53] and MLDG [45],
do not consider how the order in which domains are presented during training affects model gener-
alization. We believe this overlooks the potential to dynamically adapt the domain scheduler used
for data partition based on certain criteria, such as domain difficulty, which could result in a more
targeted training strategy and, therefore, better outcomes. In this paper, we observe that different or-
dering strategies for domain presentation used for data partition during the meta-training and testing
phases lead to significant variations in OSDG performance, emphasizing the critical role of domain
scheduling in optimizing model generalization.

To bridge this gap, we introduce a new training strategy named the Evidential Bi-Level Hardest
Domain Scheduler (EBiL-HaDS), which allows dynamically adjusting the order of domain presen-
tation during data partitioning in the meta-training and -testing phases. The key idea of our method
is to quantify domain reliability, defined as the aggregated confidence of the model on the samples
across unseen domains, which will then be used as the main criterion for the data partition. To assess
the domain reliability, we incorporate a secondary follower network to assess the domain reliability
alongside the primary network. This allows for prioritizing the optimization of meta-learning on less
reliable domains, facilitating an adaptive domain scheduler-based data partitioning. This follower
network is trained using bi-level optimization, which involves a hierarchical setup where the solu-
tion to a lower-level optimization problem (evaluating domain reliability) serves as a constraint in an
upper-level problem (meta-learning objective). Optimization of the follower network is guided by
confidence scores generated through our proposed max rebiased evidential learning method, which
adjusts the confidence by amplifying the differences between the decision boundaries of different
classes. As a result, the follower network can better quantify the reliability of each domain based
on how distinct and consistent the classification boundaries are, improving the ability to general-
ize to unseen domains. EBiL-HaDS enhances cross-domain generalizability and differentiation of
seen and unseen classes by prioritizing training on less reliable domains through adaptive domain
scheduling.

Our experiments demonstrate the effectiveness of domain scheduling via EBiL-HaDS on three es-
tablished datasets: PACS [30], DigitsDG [62], and OfficeHome [50], which span a variety of image
classification tasks. Results demonstrate that EBiL-HaDS significantly improves model generaliz-
ability in open-set scenarios, enhancing domain generalization and the model’s ability to distinguish
between known and unknown categories in new domains. This performance surpasses that of both
random and standard sequential domain scheduling methods during training, underscoring EBiL-
HaDS’s potential to advance current OSDG capabilities in deep learning.

2 Related Work

We simultaneously address two challenges: domain generalization and open-set recognition. Do-
main generalization is a task that expects a model to generalize well to unseen domains while lever-
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aging multiple seen domains for training [47, 51]. Open-set recognition, on the other hand, aims to
reject unseen categories at test-time, e.g., by delivering low confidence scores in such cases [15].

Domain generalization methods usually alleviate the domain gap with techniques such as data aug-
mentation [54, 39, 64, 17, 63, 33, 34], contrastive learning [56, 23, 27, 42], domain adversarial
learning [14], domain-specific normalization [43], and GANs-based methods [10, 31]. For open-set
recognition, common approaches include logits calibration [3, 41], evidential learning [58, 52, 61, 2],
reconstruction-based approaches [57, 21], GANs-based methods [28], and reciprocal point-based ap-
proaches [8, 9].

A considerable cluster of research utilizes source domains that encompass diverse categories for
training, as highlighted in [13, 46, 4, 8, 35, 60], where each category poses unique domain general-
ization challenges. The primary focus of these methodologies is to improve domain generalizability,
and they tend to allocate less attention to the complexities associated with open-set scenarios. In
this setting, the categories involved in each source domain may not be the same. ODG-Net proposed
by Bose et al. [4] leverages GAN to synthesize data from the merged training domains to improve
cross-domain generalizability. SWAD proposed by Chen et al. [8] uses models averaged across
various training epochs. Katsumata et al. [26] propose to use metric learning to get discriminative
embedding space which benefits the open-set domain generalization. Wang et al. [53] introduce a
new MEDIC model together with a new formalization of the open-set domain generalization proto-
cols, where the source domains share the same categories defined as seen. This benchmark definition
balances the impact of the model’s open-set recognition and domain generalization performance in
evaluation, which is adopted in our work.

Newer OSDG approaches show great promise for meta-learning strategies for improving cross-
domain generalization [53, 45]. Yet, these works mainly utilize fixed, sequential scheduling of
source domains during training [53, 45]. Existing works in curriculum learning indicate that us-
ing a specific training order at the instance level can benefit the model performance on various
tasks [55, 25, 16, 36, 19, 40, 27, 44]. However, existing curriculum learning approaches usually
operate at the instance level (scheduling individual dataset instances within standard training) and
are not designed for OSDG tasks, while we focus on domain-based scheduling by quantifying the
domain difficulty in meta-learning. The influence of domain scheduling in the OSDG task remains
unexplored. This paper, for the first time, examines the effects of guiding the meta-learning process
with an adaptive domain scheduler, named EBiL-HaDS, which achieves data partition based on a
domain reliability measure estimated by a follower network, trained in a bi-level manner with the
supervision from the confidence score optimized by a novel max rebiased discrepancy evidential
learning.

3 Method

The most challenging domain is chosen to perform data partitioning for the meta-task reservation
during meta-learning. In our proposed EBiL-HaDS, we first utilize max rebiased discrepancy ev-
idential learning (Sec. 3.1) to achieve more reliable confidence acquisition, which is subsequently
used as the supervision for the reliability prediction of the follower network. During the training
stage, our method makes use of two networks with identical architectures: one serves as the main
feature extraction network, and the other functions as the follower network, aiming to assess the do-
main reliability. The follower network is optimized in a bi-level manner alongside the main network
(Sec. 3.2). Hardest domain selection is accomplished by aggregating votes for samples from each
domain for the randomly selected reserved classes using the follower network (Sec. 3.3).

To optimize domain scheduling, we first define the term domain reliability, as the degree to which
data from a domain consistently aids in improving the model’s accuracy and generalizability across
unseen domains. An important step is therefore to adaptively rate the domain reliability during train-
ing. To achieve this, we employ two parallel networks: the main network used for feature extraction,
and the follower network, which assesses the reliability of different domains based on the refined
confidence metrics. This follower network plays a central role in our adaptive domain scheduling
strategy: it employs a voting process to identify and select the most challenging domains – those
that exhibit the least reliability according to its assessments. After selecting the hardest domain,
the data is divided into two sets. One set includes data from more challenging domains outside the
reserved classes and data from more reliable domains within the reserved classes, which together
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form the meta-training set. The complementary partitions of the meta-training set are used as the
meta-testing set. Both networks are simultaneously optimized through a bi-level training approach,
meaning that the outcome of a lower-level optimization problem (evaluating domain reliability) is a
constraint in an upper-level problem (meta-learning objective). The entire pipeline during training
when using the proposed EBiL-HaDS is depicted in Alg. 1.

3.1 Max Rebiased Discrepancy Evidential Learning

The domain scheduler we propose leverages a follower network to ascertain reliability measure-
ments, based on reliability evaluations conducted before the start of each epoch for all source do-
mains. As such, confidence calibration is crucial for the main network’s functionality. Evidential
learning, which has been extensively applied across various domains such as action recognition [61]
and image classification [24], effectively calibrates these confidence predictions. However, a no-
table limitation of evidential learning is its propensity for overfitting, leading to suboptimal perfor-
mance [11].

To address these challenges, we propose to regularize the evidential learning by novel rebiased
discrepancy maximization, which is employed for the confidence calibration of the main network to
encourage diverse decision boundaries. This method involves training dual decision-making heads
designed to exhibit rebiased maximized discrepancies. The aim is to foster the development of both
informative and dependable decision-making capabilities within the leveraged deep learning model.
Let x denote a batch of data used in training, Mα denote the feature extraction backbone, Rθ1 and
Rθ2 denote the two rebiased layers, andK denote the Gaussian kernel to reproduce the Hilbert space.
We first calculate the max rebiased discrepancy regularization by Eq. 1,

RRB(x; Θ) =
∑

i∈{1,2}

E [K(Rθi(Mα(x)), Rθi(Mα(x)))] − 2 ∗ E[K(Rθ1 (Mα(x)), Rθ2(Mα(x)))].

(1)
We aim to maximize the above loss function to achieve the maximum discrepancy between the em-
beddings extracted from the two rebiased layers. This maximization encourages the learned evidence
from the two layers to diverge from each other, thereby capturing open-set domain generalization
cues from two different perspectives. Deep evidential learning is then applied to the conventional
classification head, providing an additional constraint to achieve more reliable confidence calibra-
tion, as described in Eq. 2.

LRBE(y,x; Θ) =
∑

i∈{1,2}

[

C
∑

c=1

[yc (logSi − log(Rθi (Mα(x))c + 1))]

]

−RRB(x; Θ) (2)

where Si =
∑C

c=1(Dir(p|Rθi (Mα(x))c + 1) denotes the strength of a Dirichlet distribution, yc is
the one-hot annotation of sample x from class c, p is the predicted probability. The two rebiased
layers are engineered to capture distinct evidence by employing max discrepancy regularization. By
averaging the logits produced by the two prediction heads on the top of the two rebiased layers for
the conventional classification on the seen categories, we can harvest the final estimated confidence
score. This score is subsequently utilized to supervise the follower network, as elaborated in the
following subsections.

3.2 Follower Network for Reliability Learning

To establish an adaptive domain scheduler for the OSDG task, the most straightforward approach
would involve training a network to directly predict the sequence in which domains are employed
during the training phase for sample selection. However, this method does not facilitate gradient
computation, thereby preventing the direct optimization of the scheduler network.

In this work, we propose an alternative method where a follower network is trained to assess the
reliability of each sample, utilizing predicted confidence scores derived from max discrepancy evi-
dential learning as supervision. Throughout the training process, we employ samples from various
domains to collectively assess reliability. Additionally, we utilize a follower network, denoted as
Mβ , which mirrors the architecture of the main network, but with classification heads replaced by
one regression head. Θ indicates all the parameters in the main network, including the parameters
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Algorithm 1 Training with Evidential Bi-Level Hardest Domain Scheduler.

Require: Known domains D; Known classes C; backbone Mα; two rebiased layers Rθ1 and Rθ2 ;
two heads Hφ1

and Hφ2
; follower scheduling network Mβ; weighted cross entropy WCE;

mean squared error MSE.
1: while not converged do
2: Randomly select two known classes ci, cj ← C;
3: Get the hardest domain d∗ using Mβ by Eq. 5; Select two domains from di, dj ← D/{d

∗};
4: Sample data Ωa,Ωb = {x

[ck,dk]|k ∈ [i, j]}, {x[ck,dk]|ck ∈ {C/{ci, cj}, dk ∈ {d
∗}};

5: Construct meta-train set by Ωm−train = Ωa ∪ Ωb;
6: Meta-train:
7: for x in Ωm−train do;
8: Extract rebiased embeddings f1 = Rθ1(Mα(x)) and f2 = Rθ2(Mα(x));
9: Obtain the max rebiased discrepancy evidential learning loss LRBE(x) using f1 and f2;

10: Follower learning LREG(x) = MSE(Mβ(x),
1
2

∑

k∈{1,2} Conf(HΦk
(fk)));

11: Obtain classification loss LCLS(x) =
∑

k∈{1,2}(WCE(HΦk
(Mα(x))),y, ω)), ω ←

Mβ(x), where y indicates the classification annotation;
12: end for
13: Lm−train ←

∑

x∈Ωm−train
(LCLS(x) + LREG(x) + LRBE(x)). Backpropagation and pa-

rameter update for the whole network;
14: Meta-test:
15: Sample data Ω∗

a,Ω
∗
b = {x[ck,dk]|ck ∈ {ci, cj}, dk ∈ {d

∗}}, {x[ck,dk]|ck ∈ C/{ci, cj}, dk ∈
{di, dj}}. Construct meta-test set Ωm−test = Ω∗

a ∪ Ω∗
b ;

16: Obtain loss for meta-test Lm−test ←
∑

x∈{Ωm−test}
(LCLS(x) + LREG(x) + LRBE(x));

17: Back propagation and parameter update using Lall = Lm−test + Lm−train.
18: end while

from the backbone, rebiased layers, and heads. We aim to solve the optimization task, as shown in
Eq. 3.

Θ∗ = argmin
Θ

Lm(MΘ(x), ω
∗ ←Mβ∗(x)) subject to β∗ = argmin

β

Lf(MΘ(x),Mβ(x)), (3)

where ω∗ indicates the instance-wise reliability which serves as weight for each instance during the
loss calculation. Substituting the best response function β∗(Θ) = argminβ Lf(MΘ(x),Mβ(x))
provides a single-level problem, as shown in Eq. 4.

Θ∗ = argmin
Θ

Lm(Θ, β∗(Θ)), (4)

where Lm denotes classification loss (LCLS) and LRBE . Lf denotes the regression loss (LREG).

3.3 Hardest Domain Scheduler during Training

We illustrate the details of the training procedure by the proposed domain scheduler in Alg. 1. We
adopt the meta-training framework outlined by MLDG [45], integrating our proposed domain sched-
uler to facilitate the data partition of meta-tasks. In this approach, optimization is achieved using
both the meta-train and -test sets, characterized by distinct data distributions. For each domain
present in the training dataset, we sample a batch that encompasses the reserved categories. Subse-
quently, we identify the most challenging domain by determining which domain exhibits the lowest
reliability under the selected seen categories. This procedure is accomplished by the calculation of
the expected reliability as in Eq. 5.

d∗ = argmin
d

({ωd|d ∈ D}), ωd = min
c∈C∗



exp



1 +

N∗

c
∑

i=1

(Mβ(x
(c,d)
i ))

N∗
c



 ∗ (0.1 + σ ∗ γd)



 , (5)

where d∗ denotes the estimated hardest domain. N∗
c and C∗ denote the number of samples from

domain d and the number of selected known categories at the start of one epoch. D denotes the

known domains used during the training procedure. x
(c,d)
i indicates the i-th sample from class c

and domain d. γd indicates the schedule frequency for domain d in the past training period, which
considers the balance of different domains.

5



Table 1: Results (%) of PACS on ResNet18 [20]. The open-set ratio is 6:1.
Photo (P) Art (A) Cartoon (C) Sketch (S) Avg

Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

OpenMax [3] 95.56 92.48 - 83.68 69.61 - 78.61 64.36 - 70.89 50.67 - 82.19 69.28 -
ERM [49] 96.04 93.40 95.11 84.18 70.54 71.89 77.63 62.80 62.57 70.44 55.81 51.75 82.07 70.64 70.33
ARPL [8] 94.83 95.06 94.63 83.93 67.88 68.82 78.56 62.98 65.30 74.34 61.20 59.80 82.91 71.78 72.14
MMLD [38] 94.83 88.80 92.94 84.43 64.83 69.43 77.11 64.21 65.36 75.14 67.70 64.69 82.88 71.38 73.11
RSC [22] 94.43 88.37 91.38 83.36 70.27 73.55 78.09 65.13 66.15 77.16 52.98 62.31 83.26 69.19 73.35
DAML [45] 91.44 80.87 82.83 83.11 72.05 71.75 79.11 66.26 66.46 82.97 72.63 73.71 84.16 72.95 73.69
MixStyle [64] 95.23 82.02 88.99 86.18 70.62 72.57 78.92 63.23 63.81 80.34 71.90 72.07 85.17 71.94 74.36
SelfReg [27] 95.72 89.34 92.26 86.24 72.45 73.77 80.77 65.75 66.38 78.30 67.06 65.69 85.26 73.65 74.53
MLDG [29] 94.99 91.48 93.70 84.12 69.52 72.15 78.45 61.59 64.32 79.99 69.67 68.60 84.39 73.06 74.69
MVDG [59] 94.43 74.07 88.07 87.62 71.98 75.05 81.18 63.95 66.34 82.41 73.55 73.83 86.41 70.89 75.82
ODG-Net [4] 93.54 89.39 89.76 85.74 72.36 73.41 81.59 67.04 67.99 79.89 61.57 67.46 85.19 72.59 74.66

MEDIC-cls [53] 94.83 83.68 90.30 86.20 69.35 74.16 81.94 63.26 67.43 81.84 69.60 70.85 86.20 71.47 75.69
MEDIC-bcls [53] 94.83 89.49 92.40 86.20 73.82 75.58 81.94 66.26 69.04 81.84 74.37 74.52 86.20 75.98 77.89

EBiL-HaDS-cls (ours) 95.80 91.54 94.62 87.24 71.87 74.15 82.98 68.55 71.62 83.21 87.31 74.50 87.31 79.77 78.72
EBiL-HaDS-bcls (ours) 95.80 93.10 94.42 87.24 75.66 77.19 82.98 67.57 72.22 83.21 90.11 77.52 87.31 81.11 80.34

Table 2: Results (%) of PACS on ResNet50 [20]. The open-set ratio is 6:1.
Photo (P) Art (A) Cartoon (C) Sketch (S) Avg

Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

OpenMax [3] 97.58 93.09 - 88.37 73.91 - 84.38 68.23 - 80.07 68.06 - 87.60 75.82 -
ARPL [8] 97.09 96.81 96.86 88.24 77.48 80.32 82.68 67.19 68.31 78.08 70.04 69.47 86.52 77.88 78.74
MIRO [7] 94.85 92.32 93.27 88.51 65.02 79.01 82.98 63.05 73.72 82.22 69.47 70.61 87.14 72.47 79.15
MLDG [29] 96.77 95.85 96.33 87.99 77.16 79.93 83.45 68.74 71.32 82.25 73.16 72.27 87.61 78.73 79.96
ERM [49] 97.09 96.58 96.68 89.99 76.05 82.44 85.10 65.79 70.59 80.31 70.29 70.16 88.12 77.18 79.97
CIRL [37] 96.53 87.75 95.40 92.06 70.75 77.44 85.71 68.82 73.71 84.35 66.73 77.24 89.66 73.51 80.95
MixStyle [64] 96.53 93.57 95.30 90.87 79.15 83.27 86.80 68.08 74.68 84.88 71.57 73.41 89.77 78.09 81.66
CrossMatch [66] 96.53 96.34 96.12 91.37 75.67 82.32 83.92 67.02 74.55 81.61 72.03 73.99 88.37 77.76 81.75
SWAD [6] 96.37 84.56 93.24 93.75 68.41 85.00 85.57 58.57 75.90 81.90 74.66 74.65 89.40 71.55 82.20
MVDG [59] 97.17 95.02 96.63 92.50 79.47 85.02 86.02 71.05 76.03 83.44 75.24 75.18 89.78 80.20 83.21
ODG-Net [4] 96.53 94.93 95.58 89.24 65.22 74.60 83.86 64.32 71.20 84.80 77.58 77.38 88.61 75.51 79.69

MEDIC-cls [53] 96.37 93.80 95.37 91.62 80.80 84.67 86.65 75.85 77.48 84.61 75.80 76.79 89.81 81.56 83.58
MEDIC-bcls [53] 96.37 94.75 95.79 91.62 81.61 85.81 86.65 77.39 78.30 84.61 78.35 79.50 89.81 83.03 84.85

EBiL-HaDS-cls (ours) 97.82 93.58 95.69 92.31 80.95 84.35 87.52 75.68 78.68 85.91 76.05 78.57 90.89 81.57 84.32
EBiL-HaDS-bcls (ours) 97.82 96.04 97.14 92.31 82.80 86.17 87.52 78.34 79.85 85.91 78.68 81.32 90.89 83.97 86.12

4 Experiments

4.1 Implementation Details

All the experiments use PyToch 2.0 and one NVIDIA A100 GPU. We set the upper limit of the
training step as 1e4 and use SGD optimizer, where the learning rate (lr) is set as 1e−3 and batch size
is chosen as 16. The weights of LCLS , LREG, and LRBE are chosen as 1.0, 1e−4, and 5e−4. Lr
decay is 1e−1 and conducted at 8e3 meta-training step. The worker number is 4 and γ is 2e−5. For
ResNet18 [20] and ResNet50 [20], each rebiased layer is constructed using a residual convolutional
block. For ConvNet [65], convolutional layers are utilized. Apart from the conventional classifica-
tion head (cls), we also utilize a binary classification head (bcls) as in MEDIC [53]. The training
time of our method is 1h on PACS (ResNet18 [20]), 1.2h on PACS (ResNet50 [20]), 20min on Dig-
itsDG (ConvNet [65]), 2h on OfficeHome (ResNet18 [20]). The parameter ablation is provided in
the appendix.

4.2 Datasets and Metrics

We adopt the open-set protocols provided by MEDIC [53], wherein the training set of each domain,
shares the same categories. Three benchmarks are involved. PACS [30] comprises 4 distinct do-
mains, i.e., photo, art-painting, cartoon, and sketch, totaling 9, 991 images. 7 classes are contained
in this dataset for each domain. Digits-DG [62] aggregates 4 standard digit recognition dataset, i.e.,
Mnist, Mnist-m, SVHN, and SYN. Office-Home [50] includes 15, 500 images across 65 classes from
4 domains, i.e., art, clipart, product, and real-world. Since MEDIC [53] did not provide a detailed
benchmark on OfficeHome, we construct the whole benchmark using several outstanding baselines
and our approach, where the last 30 categories following the alphabet order are chosen as unseen
categories. The leave-one-domain-out DG setting is adopted. Close-set accuracy (acc), H-score, and
OSCR serve as metrics following [53], where OSCR is the primary metric for OSDG.

4.3 Analysis of the Experimental Results on Three OSDG Benchmarks

We first validate the performances of our approach on the three well-established benchmarks for
the OSDG task, e.g., PACS, DigitsDG, and OfficeHome. In Table 1, we use ResNet18 [20] as the
feature extraction backbone which is pre-trained on ImageNet21K [12] for the PACS benchmark.
Compared with the state-of-the-art methods, i.e., MEDIC and ODG-Net, the proposed EBiL-HaDS
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Table 3: Results (%) of Digits-DG on ConvNet [65]. The open-set ratio is 6:4.
MNIST MNIST-M SVHN SYN Avg

Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

OpenMax [3] 97.33 52.03 - 71.03 57.26 - 72.00 49.46 - 84.83 54.78 - 81.30 53.38 -
MixStyle [64] 97.86 73.25 89.36 74.50 59.30 56.95 69.28 53.24 48.43 85.06 60.22 65.44 81.68 61.50 65.05
ERM [49] 97.47 80.90 92.60 71.03 53.92 54.04 71.08 54.37 49.86 85.67 51.57 67.63 81.31 60.19 66.03
ARPL [8] 97.75 85.74 91.86 69.78 58.08 54.21 71.78 56.98 53.63 85.31 64.04 65.89 81.16 66.21 66.40
MLDG [29] 97.83 80.36 94.28 71.11 46.84 55.17 73.64 53.54 53.64 86.08 63.56 70.34 82.16 61.08 68.36
SWAD [6] 97.71 84.44 92.65 73.09 53.35 55.94 76.08 59.18 56.25 87.95 51.27 69.03 83.71 62.06 68.47
ODG-Net [4] 96.86 71.34 90.93 72.92 58.47 56.98 69.83 55.74 51.55 85.42 67.67 68.12 81.26 63.31 66.90

MEDIC-cls [53] 97.89 67.37 96.17 71.14 48.44 55.37 76.00 51.20 55.58 88.11 64.90 73.62 83.28 57.98 70.19
MEDIC-bcls [53] 97.89 83.20 95.81 71.14 60.98 58.28 76.00 58.77 57.60 88.11 62.24 72.91 83.28 66.30 71.15

EBiL-HaDS-cls 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 73.95 78.14 87.02 70.27 75.83
EBiL-HaDS-bcls 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 69.92 79.28 87.02 71.13 75.87

Table 4: Results (%) of OfficeHome on ResNet18 [20]. The open-set ratio is 35:30.
Art Clipart Real World Product Avg

Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

OpenMax [3] 65.59 56.00 - 60.02 47.34 - 83.56 70.48 - 80.50 68.45 - 72.92 60.57 -
MixStyle [64] 62.81 53.93 50.71 52.46 44.53 42.27 81.16 67.70 67.95 76.29 63.46 62.51 68.18 57.41 55.86
ERM [49] 66.30 57.39 54.86 59.60 46.81 47.84 84.50 69.99 74.03 80.81 67.40 67.44 72.80 60.40 61.04
ARPL [8] 60.06 50.34 45.68 54.82 45.72 43.21 76.24 62.04 61.73 75.30 62.47 60.19 66.61 55.14 52.70
MLDG [29] 66.56 52.45 55.10 58.85 53.09 47.69 80.10 70.66 70.02 75.02 66.16 63.49 70.13 60.59 59.08
SWAD [6] 59.12 53.05 47.87 57.37 45.78 47.28 78.38 66.43 65.48 76.50 64.29 63.28 67.84 57.39 58.95
ODG-Net [4] 64.10 54.97 50.64 61.06 52.26 48.33 83.93 70.04 71.34 79.07 65.47 65.49 72.04 60.69 58.95

MEDIC-cls [53] 66.81 55.78 55.85 61.14 54.21 48.51 85.03 71.16 73.15 80.69 67.72 68.09 73.42 62.22 61.40
MEDIC-bcls [53] 66.81 51.76 56.21 61.14 53.28 48.97 85.03 70.61 74.08 80.69 67.70 67.17 73.42 60.82 61.61

EBiL-HaDS-cls 68.18 59.66 56.83 63.48 57.01 52.26 85.48 72.88 74.45 81.61 71.03 70.25 74.69 65.15 63.45
EBiL-HaDS-bcls 68.18 53.57 57.49 63.48 52.12 53.14 85.48 74.20 75.64 81.61 72.20 71.62 74.69 62.97 64.47

achieves promising performance improvements for all the domain generalization splits. On averaged
metrics across all of these DG splits, our approach delivers performance improvements by 1.11% of
close-set accuracy, 5.13% of H-score, and 2.45% of OSCR for the binary classification head (bcls),
and consistent performance improvements can be found in the conventional classification head (cls).
Through using EBiL-HaDS to achieve a more reasonable domain scheduler during the training, we
observe that on the most challenging domain generalization split, i.e., Cartoon as unseen domain,
EBiL-HaDS delivers the most performance benefits. The core strength of EBiL-HaDS is its adaptive
domain scheduling, optimized through a bi-level manner to achieve maximum rebiased discrepancy
evidential learning. This ensures comprehensive and discriminative data partitions during training,
enhancing generalization to unseen domains, which is observed from the above experimental anal-
yses. Significant performance gains in challenging DG splits, such as the unseen Cartoon domain,
demonstrate its effectiveness in handling extreme domain shifts. Consistent metric improvements
highlight EBiL-HaDS’s versatility across various OSDG challenges.

Further experiments on a different backbone, i.e., ResNet50 [20], are delivered in Table 2, where
our method contributes 1.08%, 0.94%, and 1.27% performance improvements of close-set accuracy,
H-score, and OSCR for binary classification head and consistent performance improvements for the
conventional classification head. EBiL-HaDS contributes more performance improvements when
we compare the experimental results on ResNet18 with ResNet50 [20] for the PACS dataset, which
illustrates that the EBiL-HaDS is more helpful in alleviating the generalizability issue of model-
preserving light-weight network structure since a network with small size is hard to optimize and
obtain the generalizable capabilities on challenging unseen domains. This observation is further vali-
dated by the experimental results on DigitsDG where a smaller network structure, i.e., ConvNet [65],
is used, as shown in Table 3. Our method contributes 3.74%, 4.83%, and 4.72% performance im-
provements of close-set accuracy, H-score, and OSCR for binary classification head and 3.74%,
12.29%, and 5.64% performance improvements of close-set accuracy, H-score, and OSCR for the
conventional classification head. Consistent performance improvements are shown in Table 4 on
the OfficeHome. We further observe that using EBiL-HaDS, the optimized model can contribute a
distinct separation between confidence scores of the model on the unseen categories and seen cate-
gories in the test unseen domain, showing the benefits of a reasonable domain scheduler for OSDG.

4.4 Analysis of the Ablation Experiments

We deliver the ablation experiments in Table 5, We first remove the LRBE by directly supervising the
follower network using the confidence score provided by SoftMax supervised by cross-entropy loss
for classification, where the results are shown in the second part of Table 5 (w/o RBE). Compared
with this ablation, our method achieves 1.82%, 5.24%, and 3.46% performance improvements of
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Table 5: Module ablation of the DigitsDG on ConvNet [65].
Head DGS RBE MNIST MNIST-M SVHN SYN Avg

Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

cls 97.89 67.37 96.17 71.14 48.44 55.37 76.00 51.20 55.58 88.11 64.90 73.62 83.28 57.98 70.19
bcls 97.89 83.20 95.81 71.14 60.98 58.28 76.00 58.77 57.60 88.11 62.24 72.91 83.28 66.30 71.15

cls X 99.17 79.09 95.37 71.78 60.66 57.05 78.58 60.34 59.52 91.28 70.05 76.65 85.20 67.54 72.15
bcls X 99.17 80.52 96.08 71.78 55.79 58.10 78.52 61.51 60.89 91.28 72.31 74.55 85.20 67.35 72.41

cls X 99.14 79.47 95.14 72.06 59.19 56.76 77.61 56.88 58.37 91.11 72.28 72.78 84.98 66.96 70.76
bcls X 99.14 81.03 96.03 72.06 60.89 57.60 77.61 59.21 59.32 91.11 73.53 73.96 84.98 68.67 71.98

cls X X 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 75.82 78.14 87.02 70.27 75.83
bcls X X 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 75.77 79.28 87.02 72.59 75.87

Table 6: Comparison with different domain schedulers on DigitsDG with open-set ratio 6:4.
MNIST MNIST-M SVHN SYN Avg

Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

SequentialSched-cls 97.89 67.37 96.17 71.14 48.44 55.37 76.00 51.20 55.58 88.11 64.90 73.62 83.28 57.98 70.19
SequentialSched-bcls 97.89 83.20 95.81 71.14 60.98 58.28 76.00 58.77 57.60 88.11 62.24 72.91 83.28 66.30 71.15

Random-cls 98.39 52.93 94.21 70.92 52.70 52.41 77.92 59.65 57.95 88.33 44.11 75.66 83.89 52.35 70.06
Random-bcls 98.39 73.67 94.22 70.92 57.23 54.87 77.92 57.54 61.06 88.33 68.34 74.81 83.89 64.20 71.24

EBiL-HaDS-cls 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 75.82 78.14 87.02 70.27 75.83
EBiL-HaDS-bcls 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 75.77 79.28 87.02 72.59 75.87

(a) ODGNet (b) MEDIC-cls (c) MEDIC-bcls (d) Ours-cls (e) Ours-bcls

Figure 1: Comparison of open-set confidence using ResNet18 [20] on PACS. Photo is the unseen
domain. We use red and blue colors to denote unseen and seen categories.

(a) MEDIC photo (b) Ours photo (c) MEDIC art (d) Ours art
Figure 2: The visualization of the embeddings through TSNE [48] for PACS on ResNet18 [20].

(a) Acc-SA1 (b) OSCR-SA1 (c) Acc-SA2 (d) OSCR-SA2
Figure 3: Ablation of different open-set ratios on DigitsDG dataset by ConvNet [65] backbone,
where SA indicates Split Ablation. Regarding all the splits, Case 1 (denoted by red color) indicates
using 7, 8, 9, 10 as unseen categories. In (a) and (b), Case 2 (denoted by blue color) and Case 3
(denoted by gray color) indicate that using 0, 1, 2, 3 and 2, 3, 4, 5 as unseen categories. In (c) and
(d), Case 2 and Case 3 indicate using 7, 8, 9 and 8, 9 as unseen categories, respectively.

close-set accuracy, H-score, and OSCR for binary classification head and 1.82%, 2.73%, and 3.68%
performance improvements of close accuracy, H-score, and OSCR for conventional classification
head. The significant OSDG performance improvements highlight the importance of the confidence
score learned by the max rebiased discrepancy evidential learning in supervising the follower net-
work, ensuring the promising reliability prediction. Then we use a sequential scheduler and keep
the LRBE in the third part of Table 5 (w/o DGS), where our approach outperforms this variant by
2.04%, 3.92%, and 3.89% of close accuracy, H-score, and OSCR for binary classification head and
2.04%, 3.31%, and 5.07% of these metrics for conventional classification head. This observation
shows the importance of the proposed domain scheduler for the OSDG task and highlights the effect
of using meta-learning trained with a reasonable data partition. Both ablations show better OSDG
performances compared with MEDIC, confirming the benefit of each component. We further deliver
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more ablations, e.g., the benefits brought by the max discrepancy regularization term, comparison
with recent curriculum learning approaches, and ablation of the rebiased layers in the appendix.

4.5 Comparison of Different Domain Schedulers for OSDG Task

We present several comparison experiments in Table 6 to demonstrate the efficacy of various domain
schedulers when applying meta-learning to the OSDG task. We compare our proposed EBiL-HaDS
with both the sequential domain scheduler and the random domain scheduler. The sequential domain
scheduler selects domains in a fixed order for batch data partitioning, while the random scheduler as-
signs domains randomly. Results show that EBiL-HaDS significantly outperforms both the random
and sequential domain schedulers. Specifically, EBiL-HaDS achieves performance improvements
of 3.13%, 8.39%, and 4.63% in closed accuracy, H-score, and OSCR for the binary classification
head, and 3.13%, 17.92%, and 5.77% in these metrics for the conventional classification head com-
pared to the random scheduler. This ablation demonstrates that our scheduler enables the model to
converge to a more optimal region, which outperforms both predefined fixed-order (sequential) and
maximally random (random) schedulers, underscoring the importance of a well-designed domain
scheduler in meta-learning for the OSDG. More ablations on domain schedulers are supplemented
in the appendix.

4.6 Analysis of the TSNE Visualizations of the Latent Space

In Figure 2, we deliver the TSNE [48] visualization of the latent space of MEDIC and our approach
on the OSDG splits, i.e., photo and art as unseen domains. Unseen and seen categories are denoted
by red and other colors. we observe that the model trained by our method delivers a more compact
cluster for each category and the unseen category is more separable regarding the decision boundary
in the latent space. Our method’s ability to improve the generalizability of the model is particularly
noteworthy. The well-structured latent space facilitates better transfer learning capabilities, allowing
the model to adapt more efficiently to new, unseen categories. This characteristic is especially
beneficial in dynamic environments where the data distribution can change over time. In essence,
the effectiveness of our approach in achieving a more discriminative and generalizable latent space
can be directly linked to the sophisticated data partitioning achieved through EBiL-HaDS. This
demonstrates the profound influence that carefully designed domain schedulers can have on the
overall performance of deep learning models, emphasizing the need for thoughtful consideration in
their implementation.

4.7 Ablation of the Open-Set Ratios and the Number of Unseen Categories

We first conduct the ablation towards different unseen categories with a predefined open-set ratio
in Figure 3a and Figure 3b of close-set accuracy and the OSCR for open-set evaluation, where the
performance of the ODG-NET, binary classification head, and conventional classification head of
MEDIC method and our method are presented. We then conduct the ablation towards different
numbers of unseen categories in Figure 3c and Figure 3d of close-set accuracy and the OSCR for
open-set evaluation, where the performance of the ODG-NET, binary classification head, and classi-
fication head of MEDIC method and our method are presented. From the experimental results and
comparisons, we can find consistent performance improvements, indicating the high generalizability
of our approach across different open-set ratios and unseen category settings.

5 Conclusion

In this study, we introduce the Evidential Bi-Level Hardest Domain Scheduler (EBiL-HaDS) for the
OSDG task. EBiL-HaDS is designed to create an adaptive domain scheduler that dynamically ad-
justs to varying domain difficulties. Extensive experiments on diverse image recognition tasks across
three OSDG benchmarks demonstrate that our proposed solution generates more discriminative em-
beddings. Additionally, it significantly enhances the performance of state-of-the-art techniques in
OSDG, showcasing its efficacy and potential for broader applications for deep learning models.

Limitations and Societal Impacts. The positive societal impact of EBiL-HaDS is its ability to make
the model aware of out-of-distribution categories in unseen domains, thereby achieving more reliable
decisions. EBiL-HaDS highlights the significance of domain scheduling in OSDG. However, our
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method may still lead to misclassification and biased content, potentially causing false predictions
with negative impacts. EBiL-HaDS depends on source domains with unified categories and has only
been tested on image classification. We aim to extend it to other tasks in the future.
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A Further Illustration of the Evaluation Methods and Protocols

We follow the same protocol according to the MEDIC approach [53]. For PACS dataset which is
used in Table 1 and Table 2, we use the open-set ratio as 6 : 1, where the elephant, horse, giraffe,
dog, guitar, house are selected as seen categories and person is selected as the unseen category.
For the DigitsDG dataset, we leverage the open-set ratio as 6 : 4, where digits 0, 1, 2, 3, 4, 5 are
used as seen categories while digits 6, 7, 8, 9 are selected as unseen categories, in Table 3. For the
OfficeHome dataset, Mop, Mouse, Mug, Notebook, Oven, Pan, PaperClip, Pen, Pencil, PostitNotes,
Printer, PushPin, Radio, Refrigerator, Ruler, Scissors, Screwdriver, Shelf, Sink, Sneakers, Soda,
Speaker, Spoon, TV, Table, Telephone, ToothBrush, Toys, TrashCan, Webcam are chosen as the 30
unseen categories. The Acc indicates the close-set accuracy measured on the seen categories to
assess the correctness of the classification. The H-score and OSCR are measurements for the open-
set recognition which are widely used in the OSDG field. Since the H-score relies on a predefined
threshold derived from the source domain validation set to separate the seen categories and unseen
categories, it is regarded as a secondary metric in our evaluation. MEDIC proposes OSCR for the
OSDG evaluation where no predefined threshold is required, which is used as our primary evaluation
metric.

Regarding the calculation of the H-Score, we first have a threshold ratio λ to separate the samples
coming from seen and unseen classes. When the predicted confidence score is below λ, we regard
the corresponding samples as an unseen category. Then, we calculate the accuracy for all the samples
regarded as seen categories according to their corresponding seen labels, which can be denoted as
Acck. The accuracy calculation of the unseen categories is conducted in a binary classification
manner, where the label for the samples from the seen category is annotated as 1 and the label for
the samples from the unseen category is annotated as 0. Then the accuracy for the unseen evaluation
can be denoted as Accu. The H-score is calculated as follows,

Hscore =
2 ∗Accu ∗Acck
Accu +Acck

. (6)

OSCR is a combination of the accuracy and the AUROC via a moving threshold to measure the
quality of the confidence score prediction for the OSDG task. Different from the AUROC, OSDG
only calculates the samples that are correctly predicted using such moving threshold, which is a
combination of the calculation manner from the H-score and AUROC.
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B More Ablations of the Proposed Method

B.1 Ablation of the RBE

We deliver the ablation results of schedulers with different loss function components on the Digits-
DG dataset with an open-set ratio of 6:4 for close-set accuracy, H-score, and OSCR of both the con-
ventional and binary classification heads under different dataset partitions (Mnist, Mnist-m, SVHN,
SYN). The experiments are conducted by removing the whole LRBE component or removing only
the regularization term RRB from the EBiL-HaDS method. The results show that EBiL-HaDS per-
forms better than the other two variations on almost all the dataset partitions except the H-score
of Mnist-m, as shown in Table 7, demonstrating the effect of our LRBE and the importance of the
regularization termRRB in the whole LRBE component.

Comparisons between EBiL-HaDS and the method without the LRBE illustrate the whole improve-
ment of our deep evidential learning component with regularization term RRB . EBiL-HaDS has
in average 2.04%, 3.31%, 5.07% performance increase of the conventional classification head and
2.04%, 3.92%, 3.89% increase of the binary classification head for close-set accuracy, H-score, and
OSCR, respectively. Differences between the models without LRBE and withoutRRB demonstrate
the effect of our deep evidential learning itself. The performance with deep evidential learning im-
proves 0.66%, 0.43%, 2.47% with the conventional classification head and 0.66%, 0.73%, 0.83%
with the binary classification head for close-set accuracy, H-score, and OSCR in average. On the
other hand, EBiL-HaDS has superior results than the model without regularization term RRB by
1.38%, 2.88%, 2.60% and 1.38%, 3.19%, 3.06% for close-set accuracy, H-score, OSCR with the
conventional and binary classification heads averagely. These experiments showcase the signifi-
cance of regularization term RRB , which contributes more than 50% performance improvement in
the whole LRBE component on all 3 metrics with either conventional or binary classification head.

Table 7: Comparison with different domain schedulers on Digits-DG with open-set ratio 6:4 using
ConvNet [65] (Best in Bold).

MNIST MNIST-M SVHN SYN Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

w/o RBE (cls) 99.14 79.47 95.14 72.06 59.19 56.76 77.61 56.88 58.37 91.11 72.28 72.78 84.98 66.96 70.76
w/o RBE (bcls) 99.14 81.03 96.03 72.06 60.89 57.60 77.61 59.21 59.32 91.11 73.53 73.96 84.98 68.67 71.98

w/o RB (cls) 99.19 82.72 94.67 73.89 56.47 60.78 78.17 56.54 59.54 91.31 73.81 77.92 85.64 67.39 73.23
w/o RB (bcls) 99.19 84.89 96.13 73.89 60.03 58.73 78.17 61.49 60.20 91.31 71.17 76.17 85.64 69.40 72.81

EBiL-HaDS-cls 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 75.82 78.14 87.02 70.27 75.83
EBiL-HaDS-bcls 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 75.77 79.28 87.02 72.59 75.87

B.2 Ablation of the Hyperparameters

We visualize the impact of various hyperparameter configurations on the DigitsDG dataset for close-
set accuracy, as well as the OSCR of both the conventional and binary classification heads under
different dataset partitions (Mnist, Mnist-m, SVHN, SYN as unseen domains), as illustrated in Fig-
ure 7, Figure 8, and Figure 9. Figure 7 presents an ablation study focusing on the σ influences, and
demonstrates that varying σ from 2e−1 to 2e−6 slightly impacts model performance, with certain set-
tings yielding optimal results. For instance, lower values of σ generally enhance the OSCR of binary
classification head, particularly in more complex datasets like SVHN, suggesting that σ is important
for achieving a balance between robustness and accuracy in domain generalization scenarios.

In Figure 8, adjustments to the loss weight of LREG ranging from 1e−3 to 1e−6 are analyzed, which
is evident that the loss weight of LREG with 1e−4 yields the most optimal results across various
metrics. Conversely, excessively lower loss weight of LREG appears to have a detrimental effect,
potentially leading to overfitting or diminishing the model’s ability to generalize effectively across
different domains. Besides, Figure 9 explores the ablation of the loss weight of LRBE via adjusting
LRBE from 5e−1 to 5e−4. It shows a direct effect on both accuracy and OSCR, with lower weights
generally improving performance, particularly for challenging datasets like SVHN, which suggests
that LRBE plays a critical role in the evidential learning framework, significantly influencing the
model’s ability in open-set conditions under unseen domains. Tuning of hyperparameters σ, the loss
weights ofLREG andLRBE are significant for optimizing the performance of domain generalization
models. Optimal settings remarkably enhance both the accuracy of meta-training and the OSCR of
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the classification heads, particularly under complex and challenging dataset conditions like SVHN
as the unseen domain.

B.3 Ablation of the Rebiased Layers

In this subsection, we provide the ablation of the layer number used for the rebiased operation as
shown in Table 8. In this ablation, 1-1 layer, 2-1 layer, and 2-2 layer indicate that the Rθ1 and Rθ2

are both constructed by 1 convolutional layer, constructed by 1 and 2 convolutional layers, and both
constructed by 2 convolutional layers, with unified kernel size 3. We first observe that all of the
ablation experiments outperform the baseline MEDIC in terms of the averaged OSDG performance,
indicating that with rebiased setting our method can achieve overall OSDG performance improve-
ments regardless of the layer constructions. Delving deeper into the ablation comparison, we find
that different convolutional layers to construct the rebiased head can achieve the best performance.
This 2-1 layer setting is thereby adopted in other experiments.

Table 8: Ablation of the rebiased layer number on Digits-DG with open-set ratio 6:4 using Con-
vNet [65] (Best in Bold).

MNIST MNIST-M SVHN SYN Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

MEDIC (cls) 97.89 67.37 96.17 71.14 48.44 55.37 76.00 51.20 55.58 88.11 64.90 73.62 83.28 57.98 70.19
MEDIC (bcls) 97.89 83.20 95.81 71.14 60.98 58.28 76.00 58.77 57.60 88.11 62.24 72.91 83.28 66.30 71.15

1-1 layer (cls) 99.11 87.30 94.12 72.86 56.50 59.29 78.64 61.69 61.45 92.58 74.30 78.12 85.80 69.97 73.25
1-1 layer (bcls) 99.11 91.35 96.92 72.86 60.20 61.10 78.64 62.16 60.67 92.58 75.05 79.78 85.80 72.19 74.62

2-1 layer (cls) 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 75.82 78.14 87.02 70.27 75.83
2-1 layer (bcls) 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 75.77 79.28 87.02 72.59 75.87

2-2 layers (cls) 99.08 87.02 96.61 73.32 56.57 59.33 79.14 61.97 61.03 94.00 74.54 79.13 86.39 70.03 74.03
2-2 layers (bcls) 99.08 90.12 96.79 73.32 60.11 59.59 79.14 59.58 60.04 94.00 72.74 77.48 86.39 70.64 73.48

B.4 Comparison with the Self-Generated Reliability-Based Domain Scheduler and
Easy-to-Hard Domain Scheduler

We deliver the comparison among the predefined domain scheduler [53], the self-generated
reliability-based domain scheduler (denoted as SDGS), the easier domain scheduler (denoted as
EDS), and our domain scheduler in Table 9. The self-generated reliability-based domain scheduler
indicates that we do not rely on the follower network to achieve the reliability assessment while the
confidence score from the main network is utilized for the domain scheduling. This comparison is
designed to showcase the importance of the follower network used for the domain reliability assess-
ment. The easier domain scheduler indicates that we use the domain with the highest reliability to
accomplish the data partition during the meta-learning.

Through using the follower network, we observe that our method outperforms SDGS by 2.19%,
2.81%, and 3.29% of Acc, H-score, and OSCR for binary classification head and 2.19%, 3.42%,
and 4.05% of Acc, H-score, and OSCR for conventional classification head. Consistent performance
benefits of our method can be observed when we compare the results of the EDS with ours, indi-
cating the importance of using the hardest domain scheduler in the OSDG task when meta-learning
is involved. Compared with the predefined domain scheduler from MEDIC, SDGS and EDS out-
perform it obviously, indicating the importance of using an adaptive domain scheduler during the
meta-learning procedure for the OSDG task.

Table 9: Comparison of self-generated reliability-based domain scheduler, the Easy2Hard scheduler,
and ours on Digits-DG with open-set ratio 6:4 using ConvNet [65] (Best in Bold).

MNIST MNIST-M SVHN SYN Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

MEDIC (cls) 97.89 67.37 96.17 71.14 48.44 55.37 76.00 51.20 55.58 88.11 64.90 73.62 83.28 57.98 70.19
MEDIC (bcls) 97.89 83.20 95.81 71.14 60.98 58.28 76.00 58.77 57.60 88.11 62.24 72.91 83.28 66.30 71.15

SDGS (cls) 98.97 85.99 95.67 71.17 50.86 56.06 76.72 57.55 57.78 92.47 72.98 77.61 84.83 66.85 71.78
SDGS (bcls) 98.97 88.79 96.62 71.17 57.01 54.18 76.72 57.89 59.06 92.47 75.44 80.46 84.83 69.78 72.58

EDS (cls) 98.89 76.21 95.40 72.17 53.81 57.46 76.86 58.07 58.95 90.72 69.40 76.45 84.66 64.37 72.07
EDS (bcls) 98.89 88.17 96.46 72.17 59.15 56.09 76.86 59.61 57.97 90.72 69.98 76.58 84.66 69.23 71.78

Ours (cls) 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 75.82 78.14 87.02 70.27 75.83
Ours (bcls) 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 75.77 79.28 87.02 72.59 75.87
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B.5 Comparison with Other Curriculum Learning Approaches

We implement two recent curriculum learning approaches, i.e., the training paradigms proposed by
Wang et al. [55] and Abbe et al. [1] into the OSDG task, where the comparison of the experimental
results are delivered in Table 10. We first observe that using different training paradigms can benefit
OSDG. Compared with the MEDIC baseline, the approach proposed by Abbe et al. [1] achieves
performance improvements of 2.44%, 3.49%, and 0.92% and 2.44%, 2.04%, and 1.09% of Acc,
H-score, and OSCR for the conventional classification head and the binary classification head. The
approach proposed by Wang et al. [55] also delivers promising comparable results with the MEDIC
baseline. Furthermore, since our approach is specifically designed for the OSDG task, our approach
achieves performance improvements of 1.30%, 8.80%, and 4.72% and 1.30%, 4.25%, and 3.63% in
Acc, H-score, and OSCR for the conventional classification head and the binary classification head
compared with the approach proposed by Abbe et al. [1], illustrating the superior performance of
our domain scheduler based data partition in the OSDG task.

Table 10: Comparison with other curriculum learning methods on Digits-DG with open-set ratio 6:4
using ConvNet [65] (Best in Bold).

MNIST MNIST-M SVHN SYN Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

MEDIC (cls) 97.89 67.37 96.17 71.14 48.44 55.37 76.00 51.20 55.58 88.11 64.90 73.62 83.28 57.98 70.19
MEDIC (bcls) 97.89 83.20 95.81 71.14 60.98 58.28 76.00 58.77 57.60 88.11 62.24 72.91 83.28 66.30 71.15

Wang et al. [55] (cls) 98.92 87.80 94.34 72.22 48.27 57.99 78.14 52.87 59.92 90.03 62.48 69.35 84.83 62.86 70.40
Wang et al. [55] (bcls) 98.92 89.42 94.98 72.22 60.13 58.22 78.14 59.20 59.46 90.03 66.43 70.67 84.83 68.78 70.83

Abbe et al. [1] (cls) 99.22 78.06 94.79 71.92 50.16 55.56 79.81 52.80 59.95 91.92 64.87 74.13 85.72 61.47 71.11
Abbe et al. [1] (bcls) 99.22 88.37 95.53 71.92 60.06 57.96 79.81 59.55 60.32 91.92 65.37 75.14 85.72 68.34 72.24

Ours (cls) 99.50 87.40 97.49 74.28 56.58 60.86 80.33 61.27 62.84 93.97 75.82 78.14 87.02 70.27 75.83
Ours (bcls) 99.50 91.63 97.58 74.28 60.72 59.39 80.33 62.23 63.88 93.97 75.77 79.28 87.02 72.59 75.87

C More Details of the Open-Set Ratios and Splits Ablations

We visualize the impact of different strategies for splitting known and unknown classes on the Dig-
itsDG dataset, specifically examining the effects on close-set accuracy and OSCR of both conven-
tional and binary classification heads. The analysis covers various dataset partitions, including Mnist,
Mnist-m, SYN, and SVHN, as depicted in Figure 4 and Figure 5. Figure 4 presents an ablation study
focusing on the selection of unknown classes with a 6:4 ratio. Despite the suboptimal dataset par-
titioning leading to declines in both close-set accuracy and OSCR, the superiority of our method
remains largely unaffected by the choice of unknown classes. It consistently achieves the highest
close-set accuracy and OSCR across most domains within the DigitsDG dataset, while also maintain-
ing competitive performance in the remaining domains. This demonstrates the model’s proficiency
in distinguishing and recognizing known classes within the training set, as well as its capability
of managing unseen classes, thereby highlighting its robustness in open-set environments. Further-
more, Figure 5 illustrates an ablation study examining various open-set ratios (7:3 and 8:2). By
analyzing the impact of various open-set ratios in this ablation, we show that our method effectively
mitigates saturation in close-set accuracy, maintaining robust generalization capabilities of OSDG.
However, the imbalance between known and unknown samples diminishes the model’s ability to
differentiate unknown classes, resulting in a general decrease in OSCR. Despite this challenge, our
method consistently achieves the highest OSCR across different open-set ratios compared with the
baselines. Notably, in the complex and challenging SVHN domain, our OSCR exceeds the baseline
MEDIC-bcls by 5.08% at the 8:2 ratio. This finding underscores our model’s exceptional perfor-
mance in detecting unknown classes and accurately classifying known ones.

D Analysis of the Performances during Training

We visualize the accuracy changes during training every 100 epochs for the meta-learning process,
reporting both validation accuracy and test accuracy, as shown in Figure 6. Implementing our do-
main scheduler introduces significant improvements in the model’s training dynamics. Notably, the
validation accuracy curve appears smoother compared to the MEDIC baseline, as illustrated in Fig-
ure 6a and Figure 6c. At the early stages of meta-learning for OSDG, our domain scheduler demon-
strates superior initial training performance, with test set accuracy surpassing that of MEDIC [53].
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These findings suggest that customizing the training schedule to match distinct domain partitions
within the data can substantially enhance both training efficiency and overall performance. Our ap-
proach capitalizes on specialized domain knowledge, allowing the training algorithm to better adapt
to varying data characteristics, ultimately optimizing the model’s performance outcomes.
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(a) Close-set accuracy on DigitsDG when we choose 0, 1, 2, 3 as unknown classes.

(b) Close-set accuracy on DigitsDG when we choose 2, 3, 4, 5 as unknown classes.

(c) OSCR on DigitsDG when we choose 0, 1, 2, 3 as unknown classes.

(d) OSCR on DigitsDG when we choose 2, 3, 4, 5 as unknown classes.

Figure 4: Experimental details for the ablation of different splits on 6:4 ratio on DigitsDG dataset.
(Supplementary figure)
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(a) Close-set accuracy on DigitsDG when we choose 7, 8, 9 as unknown classes.

(b) Close-set accuracy on DigitsDG when we choose 8, 9 as unknown classes.

(c) OSCR on DigitsDG when we choose 7, 8, 9 as unknown classes.

(d) OSCR on DigitsDG when we choose 8, 9 as unknown classes.

Figure 5: Experimental details for the ablation of different open-set ratios on DigitsDG dataset.
(Supplementary figure)
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(a) Val and test accuracy on MnistDG, where Mnist is
chosen as the unseen domain.

(b) Val and test accuracy on MnistDG, where Mnist-m
is chosen as the unseen domain.

(c) Val and test accuracy on MnistDG, where SYN is
chosen as the unseen domain.

(d) Val and test accuracy on MnistDG, where SVHN is
chosen as the unseen domain.

Figure 6: Val and test accuracy on MnistDG, where the validation accuracy of MEDIC and our
approach are indicated by lines in blue and orange colors, and the test accuracy of MEDIC and
our approach are indicated by lines in gray and yellow colors. The horizontal axis indicates the
evaluation step with stepsize 100 during the meta-learning procedure.

(a) Accuracy (b) OSCR (cls)

(c) OSCR (bcls)

Figure 7: Ablation for the σ, where the horizontal axis indicates the ablation cases. Case 1, 2, 3,
4, 5, and 6 indicate 2e−1, 2e−2, 2e−3, 2e−4, 2e−5 and 2e−6. The experiments are conducted on
DigitsDG using a ConvNet architecture.
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(a) Accuracy (b) OSCR (cls)

(c) OSCR (bcls)

Figure 8: Ablation for the loss weight of the LREG, where the horizontal axis indicates the ablation
cases. Case 1, 2, 3, and 4 indicate 1e−3, 1e−4, 1e−5, and 1e−6. The experiments are conducted on
DigitsDG using a ConvNet architecture.

(a) Accuracy (b) OSCR (cls)

(c) OSCR (bcls)

Figure 9: Ablation for the loss weight of the LRBE , where the horizontal axis indicates the ablation
cases. Case 1, 2, 3, and 4 indicate 5e−1, 5e−2, 5e−3, and 5e−4. The experiments are conducted on
DigitsDG using a ConvNet architecture.
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