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Abstract

In the ever-evolving adversarial machine learning land-
scape, developing effective defenses against patch attacks
has become a critical challenge, necessitating reliable so-
lutions to safeguard real-world AI systems. Although dif-
fusion models have shown remarkable capacity in image
synthesis and have been recently utilized to counter ℓp-
norm bounded attacks, their potential in mitigating local-
ized patch attacks remains largely underexplored. In this
work, we propose DiffPAD, a novel framework that har-
nesses the power of diffusion models for adversarial patch
decontamination. DiffPAD first performs super-resolution
restoration on downsampled input images, then adopts bi-
narization, dynamic thresholding scheme and sliding win-
dow for effective localization of adversarial patches. Such
a design is inspired by the theoretically derived correla-
tion between patch size and diffusion restoration error that
is generalized across diverse patch attack scenarios. Fi-
nally, DiffPAD applies inpainting techniques to the orig-
inal input images with the estimated patch region being
masked. By integrating closed-form solutions for super-
resolution restoration and image inpainting into the con-
ditional reverse sampling process of a pre-trained diffusion
model, DiffPAD obviates the need for text guidance or fine-
tuning. Through comprehensive experiments, we demon-
strate that DiffPAD not only achieves state-of-the-art ad-
versarial robustness against patch attacks but also excels in
recovering naturalistic images without patch remnants. The
source code is available at https://github.com/
JasonFu1998/DiffPAD.

1. Introduction
Despite achieving remarkable success in a wide range

of machine learning applications, deep neural networks
(DNNs) are extremely susceptible to adversarial exam-
ples [34], normal inputs crafted with small perturbations
that are devised to induce model errors. The discovery of
adversarial examples raises serious concerns about the ro-

bustness of DNNs, particularly for security-sensitive do-
mains. Existing works primarily focus on ℓp-norm bounded
perturbations [1, 5, 12], a specific type of global attacks,
where the adversary is allowed to manipulate all the pix-
els within the entire image. In contrast, adversarial patch
attacks [3, 18, 41] restrict the total number of pixels that
can be modified, which typically occupy a small local-
ized region within the image. Since adversarial patches
can be easily attached to physical-world objects [39], they
pose more realistic threats to security-critical DNN systems,
ranging from surveillance cameras [42] to autonomous ve-
hicles [11]. Therefore, it is crucial to develop effective de-
fenses that are robust to adversarial patch attacks.

Numerous defenses have been proposed to enhance the
robustness of DNNs, such as adversarial purification [28],
adversarial training [1] and certified defenses [40]. In par-
ticular, adversarial purification [13, 31, 32] leverages the
power of generative models to remove adversarial noise.
Compared with adversarial training and certified defenses,
adversarial purification has the potential to protect the tar-
get model without the need for adaptive retraining. Witness-
ing the exceptional capability of diffusion models for image
synthesis tasks [9,14], recent works utilize diffusion models
for adversarial defenses [4, 24, 38], which achieve state-of-
the-art performance in building robust models. However, all
these methods are designed to defend against global attacks.
When such defenses encounter localized patch attacks, their
performance will drop to different extents, failing to ful-
fill the security requirements of real-world applications. It
remains unclear how adversarial purification and diffusion
models can help mitigate adversarial patch attacks. In order
to defend against localized patch attacks, more specialized
strategies, such as adversarial patch detection and segmen-
tation [21,35], have been developed to isolate and neutralize
adversarial patches before processing images through the
model. These methods leverage the advancements in digital
image processing to detect anomalies that are indicative of
patch tampering. Nevertheless, these methods often strug-
gle to reconstruct the original images with high fidelity and
are not successful in defending against adaptive attacks that
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can avoid gradient obfuscations [2].
To address the limitations of previous defense strategies

and exploit the full potential of diffusion models in defend-
ing against patch attacks, we propose DiffPAD, a Diffusion-
based framework for adversarial PAtch Decontamination.
Figure 1 depicts the workflow of DiffPAD. By decomposing
the defense task into patch localization and inpainting, we
address these two sub-problems via a diffusion model’s con-
ditional reverse sampling process. Such a conditional pro-
cess incorporates the visual information of the clean region
to retain label semantics integrally. We also show evidence
that justifies the usefulness of conditional diffusion models
in mitigating the distribution deviation caused by adversar-
ial patch variations, and achieve effective patch localization
through a single diffusion sampling process, where the dis-
crepancy in adversarial region is accentuated by resolution
degradation and restoration techniques. Comprehensive ex-
periments demonstrate the substantial advancement of Diff-
PAD in adversarial patch defense over existing methods, of-
fering a robust and scalable solution that aligns with real-
world application requirements. Our main contributions are
further summarized as follows:

• We integrate the closed-form solution of image super-
resolution into the reverse sampling process of a pre-
trained diffusion model for patch localization, elimi-
nating the need for fine-tuning and multiple reverse
generations. Patch decontamination is then accom-
plished using the same diffusion process, but by
switching the closed-form solution to inpainting.

• We prove a linear correlation between the patch size
and an upper bound of diffusion restoration error. Such
a relationship is empirically verified across different
classification models and patch attacks with varying
patch sizes and random positions, which facilitates the
efficiency and accuracy of patch detection.

• Through comprehensive experiments on image classi-
fication and facial recognition tasks, we demonstrate
that DiffPAD achieves state-of-the-art adversarial ro-
bustness against both adaptive and non-adaptive patch
attacks, and is capable of completely removing patch
remnants and generating naturalistic images.

2. Related work
This section introduces the most related works to ours.

Other discussions are provided in supplementary materials.
Defenses against adversarial patches. To enhance the
model robustness against adversarial attacks, various de-
fense strategies have been proposed. Initial attempts fo-
cused on simple preprocessing-based defenses, such as JPG
compression [10], thermometer encoding [15], defensive
distillation [25]. However, these methods have been shown

ineffective against adaptive attacks [2]. Adversarial train-
ing [1], which optimizes the neural network parameters by
incorporating adversarially generated inputs in training, is
by far the most popular. Nevertheless, adversarial training
suffers from high computational costs, due to the iterative
steps required for generating strong adversarial examples.
Certified defenses [40] have also been developed, but they
cannot achieve a similar level of robustness to adversarial
training. When adversarial training and certified defenses
are applied to defend against adversarial patches [27, 29],
the learned model is usually only effective to the specific at-
tacks employed in training but shows inferior generalization
performance to unseen patch attacks. To achieve compara-
ble robustness against adversarial patches, more specialized
patch detection schemes have been developed to localize
and purify adversarial patches. For instance, Liu et al. [21]
trained a patch segmenter to generate pixel-level masks for
adversarial patches, while Tarchoun et al. [35] identified
patch localization based on the property that the entropy of
adversarial patches is higher compared with other regions.
Our work falls into the line of patch detection-based de-
fenses, but aims to leverage the power of diffusion models
to achieve better defense performance.

Adversarial purification. Adversarial purification [24, 28,
31,32] refers to a special family of preprocessing-based de-
fenses that makes use of generative models. For example,
DiffPure [24] gradually injects Gaussian noise in the for-
ward diffusion steps followed by denoising during the re-
verse generation phase, where the adversarial noise is pu-
rified along the process. Such state-of-the-art generative
models offer a promising avenue for mitigating adversar-
ial examples [6, 37]. Nevertheless, adversarial purifica-
tion frameworks are typically designed for purify ℓp-norm
bounded perturbations, which may fall short against the dis-
crete and localized nature of adversarial patches. So far,
we have only identified a single existing method, DIFF-
ender [16], that utilizes diffusion models to defend against
patch attacks. DIFFender adopts a text-guided diffusion
model to localize the adversarial patch and then recon-
struct the original image. Unfortunately, DIFFender not
only requires expensive multiple reverse diffusion processes
for effective patch localization, but also relies on heuris-
tic manually-designed prompts or complex prompt tuning
steps, hindering automation in practical use cases.

3. Preliminaries on diffusion models
A diffusion model consists of forward and reverse diffu-

sion processes. The forward process progressively degrades
the underlying distribution p0 towards a noise distribution
by adding Gaussian noise, which can be characterized by a
stochastic differential equation (SDE) [43]:

dx = f(x, t)dt+ g(t)dw, (1)
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where xt ∈ Rd follows pt denoting the distribution at time
step t, w denotes the standard Wiener process (a.k.a. Brow-
nian motion), and f : Rd×R → Rd and g: R → R represent
the drift and diffusion coefficients, respectively. Given the
distribution pt, the reverse diffusion process with respect to
Equation 1 can be formulated as:

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw. (2)

For generation tasks where the condition y is specified,
the objective is to sample data from p(x|y). By apply-
ing Bayes’ theorem, the conditional process with respect
to Equation 2 can be written as:

dx =
[
f(x, t)− g(t)2∇x

(
log pt(x) + log pt(y|x)

)]
dt

+ g(t)dw. (3)

Denoising diffusion probabilistic models (DDPMs).
DDPM [14] is a milestone in diffusion models, which of-
fers unparalleled stability and quality for generative tasks.
Specifically, DDPM models the generative process using a
Markov chain xT → xT−1 → . . . → x0, where the joint
distribution is defined as:

pθ (x0:T ) = p (xT )

T∏

t=1

pθ (xt−1|xt) . (4)

DDPM sets f(x, t) = − 1
2βtx and g(t) =

√
βt and derives

the discrete-time diffusion processes. According to the sta-
tistical properties of Gaussian distribution, DDPM samples
xt from x0 using the following closed-form solution:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (5)

where ᾱt = Πt
s=1(1−βs) and ϵ ∼ N (0, I). For the reverse

sampling, DDPM estimates x0 based on the following ap-
proximation:

x0 ≈ x̂0 =
1√
ᾱt

(
xt −

√
1− ᾱtϵθ (xt)

)
, (6)

where ϵθ denotes the neural network designed to predict the
total noise between xt and x0 based on Equation 5.
Denoising diffusion restoration models. Given the strong
sample quality of DDPMs in image synthesis, DDPMs
have been adapted for conditional use in image restoration
tasks [7, 20, 44]. Kawar et al. [20] first introduced the term
“DDRM”, where the condition y is a degraded image of x
and the distribution of DDRM is defined as:

pθ (x0:T |y) = p (xT |y)
T∏

t=1

pθ (xt−1|xt,y) . (7)

In the following discussions, we refer to the family of meth-
ods that conditionally utilize DDPMs for image restora-
tion, including the first work [20], as DDRMs. During

the reverse generation process, DDRMs replace x̂0 by its
y-conditioned counterpart x̃0. Variations among differ-
ent DDRM models primarily arise in the computation of
x̃0 from x̂0 and y. For instance, the vanilla DDRM pro-
posed a singular value decomposition (SVD) based ap-
proach, assuming a linear degradation function to compute
x̃0 by pseudo-inverse, whereas DiffPIR [44] calculated x̃0

by solving a data proximal sub-problem.

4. Proposed method: DiffPAD
In this section, we first motivate and explain our design

of DiffPAD that utilizes conditional diffusion models for
accurate patch localization followed by patch restoration.
Mathematically, we work with the following definition of
adversarial patches. Let xc denote the clean image and δδδ
be the adversarial perturbation. Then, the adversarial patch
contaminated image can be defined as:

xa = (1−A)⊙ xc +A⊙ δδδ, (8)

where A ∈ {0, 1}d is the mask of the region outside the ad-
versarial patch, and ⊙ denotes the Hadamard product. Un-
like global attacks, adversarial patches modify only a small
localized region of the clean image, concealing its original
visual information.

4.1. DDRMs for patch defenses

DiffPAD follows a stepwise pipeline of patch restoration
after its localization, which utilizes DDRMs for defending
against patch attacks (Figure 1). Equation 8 reveals that
the label semantics of xa comes from (1 − A) ⊙ xc, i.e.,
the clean region. The clean region itself serves as the opti-
mal condition for guiding the diffusion process to keep the
image semantics of the original clean image to the greatest
extent. Although A is unknown for a given adversarial ex-
ample, all information from (1−A)⊙xc is included in xa,
suggesting an approach to construct the condition based on
xa. If we denote H as an image degradation function and
set y = H(xa), the corresponding diffusion process natu-
rally translates to DDRMs. A moderate image degradation
function, such as image compression, typically preserves
enough image semantics to allow high-quality restoration
by DDRMs. Employing DDRMs as the foundation model
of DiffPAD frees us from selecting a specific halt time step
or introducing extra text prompts to keep label semantics
during reverse diffusion sampling. Based on variational in-
ference, the ELBO objective of DDRMs can be rewritten
in the form of DDPMs objective, as shown in Theorem 3.2
in [20], which supports the feasibility of approximating the
optimal solutions of our DDRM-based framework by pre-
trained DDPM models without any fine-tuning. The Gaus-
sian noise of DDPMs is in nature the discretization of the
variance preserving SDE [43], so does DDRMs. There-
fore, the following property held in the forward process of
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Figure 1. The overall pipeline of DiffPAD, which follows steps numbered from 1 to 7
in order. Text and blocks in turquoise, pink and yellow correspond to the conditional
diffusion restoration module, patch localization module and image degradation opera-
tions, respectively. The input of DiffPAD is the adversarial patch contaminated image
xa (with red frame), and the output is the decontaminated image xi

0 (with green frame).

Figure 2. Illustration of the linear relationship
between diffusion restoration errors and optimal
thresholds for patch localization under various
attacks. In particular, we vary the size of the ad-
versarial patches generated by different attacks
on various model architectures.

DDPMs also holds for DDRMs:

∂DKL (p
c
t∥pat )

∂t
≤ 0, (9)

where DKL denotes the Kullback-Leibler divergence.
Equation 9 implies that the injected Gaussian noise will dis-
rupt the patterns of adversarial patches, gradually aligning
the adversarial distribution pa with the clean distribution pc

through the forward DDRMs process.

Resolution degradation and restoration. We aim to lo-
calize the patch according to the property that the adver-
sarial region exhibits more drastic changes compared to
the clean region when xa is compared with its diffusion-
generated counterpart. However, as demonstrated in [16],
solely relying on the stochasticity of the diffusion process
to disrupt the patch pattern is inefficient. To address this
challenge, we propose a resolution degradation-restoration
mechanism to amplify the diffusion restoration error in the
patch region. Such a design is motivated by the observa-
tion that image compression can enhance the model robust-
ness against patch attacks, suggesting the high sensitivity of
adversarial patches to resolution changes. In DiffPAD, we
first employ bicubic down-sampling with a scaling factor s
on xa to obtain ys, serving as the initial destruction to the
adversarial patch distribution, then intensify this destruc-
tion through the randomness along with DDRMs super-
resolution restoration, conditioned on ys (Steps 1-2 in Fig-
ure 1). This preparation allows DiffPAD to precisely lo-
calize the adversarial patch through a single diffusion gen-
eration, whereas DIFFender necessitates the generation of
at least three samples per image to ensure robust patch lo-
calization. Different from the vanilla DDRM, which as-
sumes that H is linear and uses an SVD solution to compute

x̃0. DiffPAD leverages a fast closed-form solution for effi-
cient diffusion restoration. Denoting ηt = ᾱtσ

2/(1 − ᾱt)
where σ represents the noise level associated with y, we
adopt a plug-and-play image resolution restoration function
from [45] with a bicubic kernel k:

x̃0 = F−1

(
1

ηt

(
d−F(k)⊙s

(F(k)d) ↓s
(F(k)F(k)) ↓s +ηt

))
,

(10)
where d = F(k)F (ys ↑s) + ηtF (x̂0). F , F−1, and F
denote Fast Fourier Transform (FFT), its inverse, and con-
jugate, respectively. As for operators, ↑s is the standard s-
fold up-sampler, ↓s is the down-sampler that averages s× s
distinct blocks, and ⊙s is element-wise multiplication for
distinct block processing.
Inpainting. By substituting Equation 10 with the closed-
form solution for inpainting restoration, we can take ad-
vantage of the same pre-trained DDPMs used in super-
resolution restoration. Once the patch is localized and
masked, we adapt a plug-and-play color image demosaic-
ing function from [45] for the image inpainting task:

x̃0 =
M⊙ yi + ηtx̂0

M+ ηt
, (11)

where M ∈ {0, 1}d is a customized mask on xa for acqui-
sition of yi. Note the division operations in Equations 10
and 11 are element-wise.

4.2. Adversarial patch localization

This section explains the algorithm for estimating patch
size and localizing its position. We adopt the most common
setting for adversarial patches: crafting a single square-
shaped patch of random size and position on a given clean
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image. Typically, the size of adversarial patches should not
be too large, as it will block the label semantics and render
the image unrecognizable to humans. Inspired by Theorem
3.2 of [24], which proves an upper bound on the ℓ2 distance
between a diffusion-purified ℓp-norm bounded adversarial
example and the corresponding clean image, we establish a
similar result in the following theorem for patch attacks.

Theorem 1 Assume ∥ϵθ (xt) ∥ ≤ Cϵ

√
1− ᾱt and let γ :=∫ T

0
βtdt. With probability at least 1 − ξ, the ℓ2 distance

between the diffusion-purified image x̂a with adversarial
patch and the corresponding clean image xc satisfies:

∥x̂a − xc∥ ≤ ε |A|+ γCϵ +
√
eγ − 1 · Cξ, (12)

where ε is the ℓ2-norm bound of the patch, Cξ :=√
2d+ 4

√
d log 1

ξ + 4 log 1
ξ , and d is the input dimension.

The proof of Theorem 1 is provided in the supplemen-
tary materials. Note that ∥xc − xa∥ ≤ ε |A|, then with
the help of the triangle inequality, the ℓ2 distance between a
patch-contaminated image before and after diffusion recon-
struction can be upper bounded as:

∥x̂a − xa∥ ≤ 2ε |A|+ γCϵ +
√
eγ − 1 · Cξ, (13)

where the bound is linearly correlated to the patch area
|A|. In practice, directly estimating the patch size based on
∥x̂a − xa∥ yields unsatisfactory results. The upper bound
of ℓ2 distance primarily emphasizes the most significant dif-
ferences arising from the restoration. In other words, the
subtle variations caused by the intrinsic randomness of the
diffusion model should be neglected.

Denote ⊖ as the pixel-wise difference and x∆ := x̂a ⊖
xa. As previously justified, the adversarial regions with
nearly full-scale exhibit higher discrepancies in x∆, a result
of our patch error amplification implemented during the dif-
fusion restoration on resolution (Step 3 in Figure 1). To iso-
late the pixels that contribute most to ∥x̂a − xa∥ and count
their quantity to represent the patch area, we apply the bi-
narization on x∆ with dynamic threshold τ . Enlightened
by Equation 13, we posit that τ more reasonably reflects
the upper bound of ∥x̂a − xa∥. A higher τ indicates that
the pixels filtered out by binarization are likely to have a
higher diffusion restoration error, suggesting a higher prob-
ability of originating from the patch region, equivalently, a
larger patch area in a given image. Therefore, we propose to
model τ as being linearly correlated with the mean squared
error (MSE) between x̂a and xa:

τ = µ · ∥x̂
a − xa∥
d

+ ν, (14)

where µ and ν are hyperparameters. Consequently, the esti-
mated patch area will be Ã =

∣∣Binarize(x∆, τ)
∣∣ (Step 4 in

Figure 1). To illustrate the linear relation, we craft adversar-
ial examples from the ImageNet dataset with varying patch
areas (3%, 5%, 7% of full image size) and random positions
using different attack mechanisms (i.e., AdvP and LaVAN)
across diverse classifiers (i.e., ConvNeXt and Swin-V2).
Each attack consists of 25 examples. We conduct a traver-
sal search to identify the optimal threshold for binarization
on x∆, which provides the most accurate estimation of the
original patch area for each example. By depicting the rela-
tion between the optimal thresholds and the corresponding
MSE values, Figure 2 confirms their linear correlation and
validates the effectiveness of our estimation method.

After obtaining the estimated patch size, DiffPAD uses
a sliding window of the same size to scan the values of
Binarize(x∆, τ ′), where τ ′ is a fixed threshold for suppres-
sion of the faint background restoration errors caused by the
intrinsic stochasticity of DDRMs. We pinpoint the window
position that contains the most “1” pixels as the localized
adversarial patch position (Step 5 in Figure 1). Finally, Diff-
PAD masks the localized patch region and reconstructs the
visual content in it by diffusion restoration conditioning on
the surrounding unaltered region (Steps 6-7 in Figure 1).

5. Experiments

5.1. Experimental setup

This section introduces our main experimental setup.
Other details are deferred to the supplementary materials.

Datasets and networks. We evaluate DiffPAD by an image
classification task on ImageNet [8] and a facial recognition
task on VGG Face [26]. We employ up-to-date pre-trained
classifiers ConvNeXt [23] and Swin-V2 [22], which repre-
sent the most advanced architectures in convolution neural
networks (CNNs) and vision transformers (ViTs), respec-
tively. We use Inception-V3 [33] for adaptive attacks as in
DIFFender [16] to compare their results with ours. We take
advantage of the pre-trained diffusion model from [9].

Attacks. We evaluate DiffPAD with three different patch at-
tacks. AdvP [3] is the standard localized perturbation with
random position. LaVAN [18] enhances the gradient up-
dates of AdvP and delivers stronger attacks. GDPA [41]
optimizes the patch’s position and pattern by an extra gener-
ative network. For AdvP and LaVAN, the number of attack
iterations is set as 500. For GDPA, the default 50 epochs are
employed. We also consider the white-box scenario, i.e.,
leveraging adaptive attack for comprehensive assessment.
Since DiffPAD and selected baselines are in nature prepro-
cessing mechanisms, we approximate obfuscated gradients
via BPDA [2], assuming the output of the defense func-
tion equals the clean input. For BPDA-AdvP and BPDA-
LaVAN, the number of attack iterations is set as 100.

Baselines. We choose defense baselines that can serve as
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Table 1. Comparisons of clean and robust accuracies (%) on Ima-
geNet with ConvNeXt across different patch defenses.

Defense
Attack

Clean AdvP LaVAN GDPA

w/o defense 83.9 4.7 3.9 77.1
JPG [10] 77.3 74.9 73.9 76.0
SAC [21] 80.6 79.8 80.0 79.4
Jedi [35] 82.2 80.3 80.8 80.1
DiffPure [24] 76.4 74.3 74.5 75.6

DiffPAD 82.3 82.3 82.2 80.4

Table 2. Comparisons of clean and robust accuracies (%) on Ima-
geNet with Swin-V2 across different patch defenses.

Defense
Attack

Clean AdvP LaVAN GDPA

w/o defense 83.4 0.5 0 75.7
JPG [10] 77.0 74.9 74.3 75.8
SAC [21] 81.5 81.1 80.8 79.6
Jedi [35] 81.3 79.5 79.4 79.0
DiffPure [24] 76.9 75.7 75.3 76.3

DiffPAD 81.7 82.1 81.4 80.1

purification on input images, including smoothing-based
defense JPG [10], segmentation-based defense SAC [21],
entropy-based defense Jedi [35], and diffusion-based de-
fense DiffPure [24] and DIFFender [16]. Among them,
SAC, Jedi and DIFFender are specialized defenses against
adversarial patches. Except for DIFFender which is not
open-source, all other baselines are executed by their origi-
nal implementation taking default parameter settings.
Evaluation metrics. The primary metrics for evaluating
defenses are clean and robust accuracies under patch at-
tacks. We evaluate the faithfulness of images post-defense,
compared to clean images by Peak Signal-to-Noise Ratio
(PSNR). In addition, we compute the mean Intersection
over Union (mIoU) between the estimated patch region and
the ground truth, which is an auxiliary metric to reflect the
accuracy of our patch detection module. For all these met-
rics, a higher value indicates a better performance.

5.2. Main results

Table 1 and Table 2 showcase the superior performance
of DiffPAD, which outperforms all baselines on both clean
and attacked images using AdvP, LaVAN and GDPA. While
the accuracy gap between DiffPAD and the second-best
baseline is marginal for clean data and GDPA attack, the im-
provement is significant for AdvP and LaVAN attacks. No-
tably, on ConvNeXt under AdvP attack, DiffPAD exceeds
the second-ranked baseline by 2.0%. Generally, the clean or

Table 3. Comparisons of clean and robust accuracies (%) under
adaptive BPDA attacks with Inception-V3. Results of baselines
are directly drawn from DIFFender [16].

Defense
BPDA attack

Clean AdvP LaVAN

w/o defense 100.0 0.0 8.2
JPG [10] 48.8 0.4 15.2
SAC [21] 92.8 84.2 65.2
Jedi [35] 92.2 67.6 20.3
DiffPure [24] 65.2 10.5 15.2
DIFFender [16] 91.4 88.3 71.9

DiffPAD 94.1 90.0 88.3

robust accuracy of JPG and DiffPure cannot surpass 78%,
while SAC, Jedi, and DiffPAD are all higher than 79%. Ev-
idently, global defenses fall short compared to specialized
patch defenses under patch attacks. Without defense, both
ConvNeXt and Swin-V2 report highly accurate predictions
on clean data. However, their performance will significantly
drop under AdvP and LaVAN attacks. In particular, almost
no images remain unscathed by AdvP or LaVAN attacks on
Swin-V2, with accuracy plummeting to 0.5% and 0%, re-
spectively. After applying DiffPAD, the accuracy will be
recovered to around 82%, where the reduction compared to
the clean accuracy is less than 2% for both ConvNeXt and
Swin-V2. Conversely, the GDPA attack results in a minor
accuracy reduction, namely 6.8% on ConvNext and 7.7%
on Swin-V2, yet defending against this attack proves to be
more challenging. Neither DiffPAD nor selected baselines
can bring the accuracy level back to above 81%. Given
GDPA’s inadequate attack performance on ConvNeXt and
Swin-V2, we will mainly focus on DiffPAD under AdvP
and LaVAN attacks in the following experiments.

An interesting observation is that Jedi performs better on
ConvNeXt in all scenarios, ranking as the second-best de-
fense, while SAC serves as the second-best on Swin-V2.
This distinction is likely because the features extracted by
ViTs are more globally entangled. In other words, when
SAC blocks the visual content corresponding to the ad-
versarial patches, ViTs still receive contextual information
from other regions. In contrast, CNN-based architectures
focus more on localized details, making them more suscep-
tible to information loss. For CNNs, employing Jedi to dis-
rupt the pattern of adversarial patches with their surround-
ing pixels is a better choice. This explains why ConvNeXt
is more robust than Swin-V2 in the absence of defenses.
Adversarial patches influence all semantic patches in the to-
ken operations of ViTs, while their impact on CNNs is less
pronounced, because the small convolution kernels limit the
effective propagation of localized information overall.
Adaptive attacks. Table 3 presents the results of the BPDA
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Table 4. Effects of different modules in DifffPAD. PAD, INP and
SVD stand for patch detection, inpainting restoration and singular
value decomposition, respectively.

Defense
Attack ConvNeXt (%) Swin-V2 (%)

AdvP LaVAN AdvP LaVAN

DiffPAD w/o PAD 70.7 69.5 72.9 71.7
DiffPAD w/o INP 80.7 80.1 81.2 82.1
DiffPAD (SVD) 82.5 82.0 81.8 81.9
DiffPAD 82.3 82.2 82.1 81.4

Table 5. Patch localization precision in mIoU (%) of DiffPAD with
varying patch sizes and random positions.

Patch
Attack ConvNeXt Swin-V2

AdvP LaVAN AdvP LaVAN

size 3% 82.27 83.34 80.42 80.57
size 5% 85.10 83.40 86.66 86.31
size 7% 83.35 83.44 86.52 86.69

adaptive attacks on Inception-V3. We observe that JPG and
DiffPure significantly underperform, achieving less than
20% accuracy under both AdvP and LaVAN attacks. This
suggests that the gradients of such global, nuanced recti-
fication methods are easier to be approximated than those
of localized, drastic modification methods. Jedi exhibits
stronger resilience against the AdvP-BPDA attack but fails
to generalize to the LaVAN-BPDA attack. On the contrary,
DiffPAD maintains consistent performance across different
networks and attacks, whether adaptive or not. While SAC
and DIFFender show commendable adversarial robustness
in adaptive settings, they are still inferior to DiffPAD. For
instance, DiffPAD outperforms DIFFender by 16.4% under
the LaVAN-BPDA attack, likely due to its more exact local-
ization capabilities for adversarial patches.

Ablation study. Table 4 provides the results of an ablation
study on each component of DiffPAD. Excluding patch de-
tection means that we perform only resolution degradation-
restoration on input images through a single diffusion gen-
eration. This yields even lower accuracy than the simplest
JPG defense under the same attack conditions, as the resolu-
tion degeneration cannot be eliminated but rather mitigated.
The blurring effect occurs globally, affecting both the struc-
ture of the adversarial patch as well as other visual details.
As a result, Swin-V2 outperforms ConvNeXt by 2.2% un-
der either the AdvP or LaVAN attack, which is consistent
with previous findings that CNNs are more sensitive to fine-
grained visual features.

Including the patch detection module while excluding
the inpainting restoration elevates DiffPAD to perform com-
parably with SAC under the same attacks. The final in-

Table 6. The faithfulness (PSNR) of images after various patch
defenses with reference to the original clean images. Unit: dB.

Defense
Attack ConvNeXt Swin-V2

AdvP LaVAN AdvP LaVAN

w/o defense 21.25 20.70 22.26 22.01
SAC [21] 19.63 19.57 19.42 19.42
Jedi [35] 22.77 22.57 22.95 22.94

DiffPAD 26.38 26.63 27.43 27.53

painting restoration step further promotes DiffPAD to a new
SOTA in adversarial patch defense. Inpainting is necessary
when a patch obscures critical semantics of the input im-
ages. It supplies meaningful visual content to the patch re-
gion, helping classifiers understand label semantics and pre-
venting them from interpreting the mask as pertinent visual
data. The increased stochasticity from more diffusion steps
is also beneficial for resisting adaptive attacks. The last
two rows in Table 4 are outcomes of switching the closed-
form solutions used in conditional sampling during the re-
verse diffusion process. The SVD solution [20] has been
explained at the end of Section 3. The close accuracy levels
under the same attacks imply that the influence of altering
the conditional sampling strategy is small, suggesting the
flexibility and stability of DiffPAD.

Varying patch attacks. Table 5 demonstrates the patch lo-
calization precision under diverse patch attack conditions.
It can be observed from the table that all the mIoU scores
break through 80%, ensuring the generalizability of the
patch detection module across varying patch sizes and ran-
dom positions. This finding also validates the result of The-
orem 1 with strong empirical evidence.

5.3. Further analyses

Visualizations. To examine the capability of removing
patch remnants, we visualize the images returned by dif-
ferent methods. Figure 3 displays the visual effects on ad-
versarial patches after applying baseline defenses and Diff-
PAD. DiffPure generally acts like a blurring function on the
entire image, which is noticeable in the background of the
first example. However, the pattern of adversarial patches
cannot be washed out, confusing classifiers when the patch
features compound with label-related features. SAC, while
seldom misidentifying non-patch regions as adversarial, of-
ten fails to completely screen out all adversarial pixels, as
shown in the first example. An apparent issue with Jedi
is that it crushes estimated patch regions with distortions,
injecting disruptive cues that interfere with recognition, es-
pecially for the second example. Jedi also omits the adver-
sarial patch in the third example. In contrast, examples of
DiffPAD conceal any patch remnants, with both naturalistic

7



Figure 3. Illustration of three exampled visual effects on adversarial patches before and after applying different patch defenses. Note that
it is difficult to find any traces of the adversarial patch from the images decontaminated by DiffPAD.

Figure 4. The performance of DiffPAD in facial recognition task
on VGG Face. We run twice to attain two well-restored samples.

and meaningful visual content. Table 6 lists that all PSNR
values for DiffPAD are above 26 dB under all attack condi-
tions, confirming the remarkable fidelity of the decontami-
nated adversarial examples referring to their original states.
Additional visualization results in the supplementary mate-
rials also show our method has a negligible effect on clean
images, ensuring low false positive rates of patch detection.

Transferability to facial recognition. To assess the trans-
ferability of DiffPAD, we apply the same hyperparameters
selected for ImageNet experiments to the VGG Face in a
facial recognition task. We also choose a new network–
VGG16 [17] pre-trained by [36], to test DiffPAD in a com-
pletely different task domain. We let GDPA attack the
face images given its high success rate on VGG architec-
tures [41]. By substituting the weights of the diffusion
model with those pre-trained on the FFHQ [19] dataset as
in [7], we obtain perfect facial restoration results, shown in
Figure 4. VGG16 then regains the correct perdition with
high confidence. The different samples convey the same
success, manifesting the strong defensive capabilities of
DiffPAD across various task domains.

Limitations and future works. Although our experiments
illustrate the broad applicability of DiffPAD across various
patch attack conditions, its practicability in real-time appli-
cations is constrained by the computational cost. It is worth

noting that we optimize the efficiency of DiffPAD to ex-
ecute only two rounds of diffusion generation per image,
whereas DIFFender requires at least four rounds. Given the
inherent complexity of diffusion models, the sampling pro-
cess iterates multiple neural function evaluations (NFEs) at
each time step, slowing down DiffPAD’s inference speed
compared to SAC and Jedi. Another limitation of Diff-
PAD is that adversarial patches are assumed to be or can
be enclosed by a square. This assumption might not hold
for more irregularly shaped patches such as adversarial eye-
glasses [30]. Addressing these issues will be crucial for
broadening the flexibility of DiffPAD in physical environ-
ments where such attacks may occur. Enhancing DiffPAD
to overcome these limitations will increase its versatility as
a tool for combating all adversarial patch attacks.

6. Conclusion

In this paper, we propose DiffPAD, a pretrained
diffusion-based adversarial patch defense. DiffPAD first
guide the conditional diffusion to restore the downsampled
input images, where the diffusion restoration error is cor-
related to the patch size, informing a dynamic binarization
and sliding window method for precise patch localization.
DiffPAD then replaces the super-resolution with an inpaint-
ing solution to fill masked areas. Tested extensively across
different attacks, patch sizes, target models, datasets, and
task domains, DiffPAD boosts adversarial robustness and
sustains naturalistic integrity of images, achieving SOTA
performance without text guidance or fine-tuning.
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1. Additional discussions on related work
In this section, we provide more detailed discussions of

related works on adversarial patch attacks and diffusion-
based adversarial defenses.

1.1. Adversarial patch attacks

Since Szegedy et al. [10] revealed the adversarial vul-
nerabilities of neural networks, where normal inputs crafted
with imperceptible perturbations can induce erroneous pre-
dictions, numerous attack algorithms [1, 3, 4] have been
proposed to study the model behavior in the presence of
adversarial examples. However, most existing works fo-
cused on global attacks defined by some ℓp-norm, thereby
not directly applicable to threatening real-world systems.
Brown et al. [2] first introduced the concept of adversar-
ial patches, where the adversary is only allowed to manipu-
late a small region of an image to launch the evasion attack.
Subsequently, LaVAN [6] enhanced the design of the loss
function, enabling the adversarial patch to cover only 2%
of the given image. Meanwhile, GDPA [13] improved the
attack strategy by adversarially refining the patch’s location
rather than positioning it randomly. These research efforts
lay the foundation for realizing adversarial patches in the
physical world. For example, an adversarial patch printed
on a T-shirt [14] can succeed in evading human detectors,
while Wei et al. [12] proposed adversarial stickers, which
feature meaningful patterns and achieve good performance
in both digital and physical realms.

1.2. Diffusion-based adversarial defenses

We further discuss the limitations of existing diffusion-
based adversarial defenses, including DiffPure and DIFF-
ender. DiffPure [8] has proved that forward diffusion dis-
rupts the distribution of both clean data and adversarial
perturbations. During the reverse diffusion process, clean
data can be stochastically recovered, while adversarial ef-
fects are progressively eliminated. This process can be ex-
ecuted using the standard DDPM framework. Necessarily,

to preserve the label semantics of the image, DiffPure halts
the diffusion at a specific timestep t∗ ∈ (0, T ) then com-
mences the reverse diffusion from xt∗ back to x0. DIFF-
ender [5] identified a critical limitation of DiffPure in ad-
versarial patch defense. DiffPure struggles to completely
remove the adversarial patch, which requires a larger t∗,
whereas a smaller t∗ is essential for maintaining image se-
mantics. Alternatively, DIFFender retains image semantics
with the aid of additional prompts and fine-tunes a text-
guided diffusion model for patch localization and restora-
tion. However, prompt learning introduces new challenges,
as well as limited prior contained within the text prompts
renders DIFFender less efficient, necessitating the genera-
tion of at least three samples per image to ensure robust
patch localization.

2. Proof of Theorem 1
For the sake of completeness, we provide detailed proof

of our main theoretical result presented in Section 4.2. Our
proof technique mainly follows from the proof of Theorem
3.2 in [8]. Below, we first restate the problem statement of
Theorem 1 that we are going to prove.

Theorem 1 Assume ∥ϵθ (xt) ∥ ≤ Cϵ

√
1− ᾱt and let γ :=∫ T

0
βtdt. With probability at least 1 − ξ, the ℓ2 distance

between the diffusion-purified image x̂a with adversarial
patch and the corresponding clean image xc satisfies:

∥x̂a − xc∥ ≤ ε |A|+ γCϵ +
√
eγ − 1 · Cξ, (12)

where ε is the ℓ2-norm bound of the patch, Cξ :=√
2d+ 4

√
d log 1

ξ + 4 log 1
ξ , and d is the input dimension.

Proof: For variance preserving SDE, given the adversarial
example xa defined in Equation 8, after the forward diffu-
sion process, we have

xT =
√
αT · xa +

√
1− αT · ϵ′, (15)
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where αT = e−
∫ T
0

βtdt and ϵ′ ∼ N (0, Id). As diffusion-
restored adversarial example x̂a does not have a closed-
form solution, we apply an SDE solver with the Eu-
ler–Maruyama discretization, where the drift and diffusion
coefficients of the reverse-time SDE are given by:

frev(x, t) := −1

2
βt [x+ 2sθ(xt)] ,

grev(t) :=
√

βt,

(16)

where sθ(xt) denotes the score function. The ℓ2 distance
between x̂a and the corresponding clean data xc can be
bounded as:

∥x̂a − xc∥ =
∥∥xT +

(
x̂a − xT

)
− xc

∥∥

= ∥xT +

∫ 0

T

−1

2
βt [x+ 2sθ(xt)] dt+

∫ 0

T

√
βtdw − xc∥

≤ ∥xT +

∫ 0

T

−1

2
βtxdt+

∫ 0

T

√
βtdw

︸ ︷︷ ︸
Integration of linear SDE

−xc∥

+ ∥
∫ 0

T

−βtsθ(xt)dt∥,
(17)

where the second equation is obtained by using the integra-
tion of the reverse-time SDE, and the last line is derived by
separating the integration of the linear SDE from non-linear
SDE involving sθ(xt) through the triangle inequality.

Notice that the above linear SDE is a time-varying Orn-
stein–Uhlenbeck process, where the time increment in-
versely starts from T to 0 with the initial value xT . Denote
its solution by x′ that follows a Gaussian distribution, the
mean µ0 and covariance matrix Σ0 of x′ will be the solu-
tions of the following two differential equations:

dµ

dt
= −1

2
βtµ,

dΣ

dt
= −βtΣ+ βtId,

(18)

with the initial conditions µT = xT and ΣT = 0. By
solving these two differential equations, we have x′ ∼
N

(
e

γ
2 xT , (e

γ − 1) Id
)

that is conditioned on xT , where
γ :=

∫ T

0
βtdt. Taking the advantage of reparameterization

trick, we obtain

x′ − xc

= e
γ
2 xT +

√
eγ − 1 · ϵ′′ − xc

= e
γ
2

(
e−

γ
2 xa +

√
1− e−γ · ϵ′

)
+
√
eγ − 1 · ϵ′′ − xc

=
√
eγ − 1 · (ϵ′ + ϵ′′) + xa − xc,

(19)
where the second equation follows by substituting Equation
15. Since ϵ′′ ∼ N (0, Id) and ϵ′ ⊥ ϵ′′, the first term of

the last line in Equation 19 can be combined as a zero-mean
Normal variable with variance 2 (eγ − 1).

We know the connection between the score function and
the noise prediction ϵθ(xt) in DDPM can be formulated as:

sθ(xt) = − ϵθ(xt)√
1− ᾱt

. (20)

Assuming that the ℓ2-norm of ϵθ(xt) is upper-bounded by
Cϵ

√
1− ᾱt. In other words, we assume that the ℓ2-norm of

sθ(xt) is upper-bounded by constant Cϵ. Hence,

∥x̂a − xc∥ ≤ ∥
√

2 (eγ − 1) · ϵ+ xa − xc∥+ γCϵ

≤ ∥xa − xc∥+ γCϵ +
√

2 (eγ − 1) · ∥ϵ∥,
(21)

where ϵ ∼ N (0, Id). We denote the ℓ2-norm bound of the
pixels in adversarial patch region as ε, since xa − xc =
A ⊙ (δδδ − xc), we can obtain ∥xa − xc∥ ≤ ε |A|, where
|A| represents the pixel number, i.e., the size of adversarial
patch. Furthermore, ∥ϵ∥2 ∼ χ2(d), from the concentration
inequality, we attain

Pr
(
∥ϵ∥2 ≥ d+ 2

√
dσ + 2σ

)
≤ e−σ. (22)

Let e−σ = ξ, we get

Pr


∥ϵ∥ ≥

√
d+ 2

√
d log

1

ξ
+ 2 log

1

ξ


 ≤ ξ. (23)

Finally, at least of the probability 1− ξ, we have

∥x̂a − xc∥ ≤ ε |A|+ γCϵ +
√
eγ − 1 · Cξ, (24)

where constant Cξ :=

√
2d+ 4

√
d log 1

ξ + 4 log 1
ξ , which

completes the proof of Theorem 1.

3. Experimental details
3.1. Hyperparameter setup

All our experiments are conducted in Pytorch on four
Nvidia A100 GPUs. We set µ = 0.066 and ν = 14.90
in Equation 14, which is determined using grid search. In
practice, to reduce the redundant computations, the thresh-
old τ ′ is fixed as 9. We treat input images with diffusion
restoration errors less than 62 as clean images to prevent ex-
cess defense. We run 20 NFEs for both super-resolution and
inpainting restoration. Noise level σ = 0.001 and scaling
factor s = 4 are hyperparameters in close-form solutions
(Equation 10, 11). Additionally, we repeat three rounds
of each experiment related to DiffPAD and report averaged
statistics, due to the stochasticity of diffusion processes. In
the evaluation phase, we adopt the same subset of the orig-
inal ImageNet validation set as [9], which contains 1000
images covering all categories. For a fair comparison with
DIFFender, we randomly choose 512 images from this sub-
set which can be correctly classified before the attacks.
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Figure 1. Examples of clean images where DiffPAD spuriously
detects an adversarial patch of small size (marked by the red box).

Table 1. Comparisons of robust accuracies (%) against global at-
tacks on ImageNet with Inception-V3. The best (blue) and second-
best (red) results are highlighted. PAD stands for patch detection.

Defense
Attack

FGSM PGD C&W

w/o defense 14.3 0.2 0.1
JPG 27.6 10.6 34.9
SAC 19.6 2.8 4.0
Jedi 25.9 5.6 22.5
DiffPure 64.4 64.6 65.8

DiffPAD w/o PAD 50.3 51.1 53.3

3.2. False positive of patch detection

Figure 1 visualizes how clean images appear when pro-
cessed with DiffPAD. We can see that the estimated patches
are quite small. The inpainting is competent in recovering
an image almost identical to its original version, thereby
avoiding excessive defense and ensuring the recognition
performance remains unaffected on the clean dataset. This
is also confirmed by the clean accuracies of DiffPAD, which
is always the highest compared to the other defenses.

3.3. Computational complexity

For each image resized to 256×256, SAC [7] costs 0.27s,
Jedi [11] costs 0.32s, DiffPAD costs 2.45s, and DiffPure
costs 8.59s, on average.

4. Generalizability to global attacks

Although DiffPAD targets localized patch attacks,
the proposed diffusion-based resolution degradation-
restoration mechanism can serve as a handy tool to miti-
gate ℓp-norm bounded perturbations. Table 1 compares the
robust accuracies of DiffPAD with other baselines used in
the main paper against FGSM [4], PGD [1], and C&W [3]
attacks. The trivial image transformation and other patch
defenses demonstrate limited effectiveness, far less than the
SOTA model DiffPure in such attack settings. However,
DiffPAD (40 NFEs) is second only to DiffPure and achieves
80% of its performance, taking only 30% of its runtime.
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